APPENDIX A #### ENGINEERING DESIGN AND COST ESTIMATE BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT SEGMENT II #### APPENDIX A ## ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT SEGMENT II #### **Table of Contents** | PROJECT AUTHORITY | A-1 | |---|-----------------| | PROBLEM IDENTIFICATION | A-1 | | PROJECT LOCATION | A-1 | | NATURAL FORCES | A-3 | | Winds and Tides | A-3 | | Nearshore Currents | A-3 | | Waves | A-3 | | Yearly Depth Limit | A-4 | | Sea Level Rise | A-8 | | Shoreline Erosion and Recession Due to Sea Level Rise | | | COASTAL PROCESSES | A-12 | | Historical Shoreline Change | | | Historical Volume Change | | | Volume Change and Shoreline Change Correlation | | | Inlet Impacts | | | Existing Shoreline Structures | | | Beach Slopes | | | Borrow Area Compatibility | | | Storm Surge | | | Cross-Shore Sediment Transport | | | PROTECTIVE BEACH DESIGN AND COSTS | | | Reevaluation of the Federal Project (Pompano Beach/Lauderdale | | | Implementation of the Reevaluated Federal Project (Pompano Beach | /Lauderdale-by- | | the-Sea) | | | Modification to the Federal Project (Ft. Lauderdale) | | | Beach Lengths | | | Combined Reevaluated and Modified Federal Project | | | Implementation of the Combined Reevaluated Federal Project | | | SUMMARY OF PROJECT COSTS | | | REFERENCES | | | | | | List of Tables | | | Table No. | | | A-1 Wave Height (in meters) by Month and Year (WIS Statio | on A2010) A-5 | | A-2 Largest Wave Height (in meters) by Month and Year (Wilson States) | | | | | # APPENDIX A ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT SEGMENT II ## Table of Contents (Cont.) #### List of Tables | Table No. | | | |-----------|---|------| | A-3 | Percent Occurrence (x1000) of Wave Height and Period of All Directions | | | | (WIS Station A2010) | A-7 | | A-4 | Estimated Depth of Closure | | | A-5 | Reaches Defined for Segment II | | | A-6 | Volume and Shoreline Change Rates | | | A-7 | Hillsboro Inlet Dredge and Bypassing Volumes (cy) | | | A-8 | Structural Armoring Inventory for Segment II | | | A-9 | Average Beach Characteristics | | | A-10 | Estimated Overfill Density | A-20 | | A-11 | Sensitivity Analysis for SBEACH Calibration | A-23 | | A-12 | Tropical Storms with Influence on Broward County | A-25 | | A-13 | Extratropical Storms with Influence on Broward County | | | A-14 | Recession Results for SBEACH Analysis | A-27 | | A-15 | Re-Evaluation of the Federal Project | | | | Design and Advance Fill Volumes and Hardbottom Coverage | A-32 | | A-16 | Estimate of Contract and Construction Costs | A-33 | | A-17 | Pompano Beach/Lauderdale-by-the-Sea Beach Extensions, Fill Volumes, | | | | and Hardbottom Coverage | A-35 | | A-18 | Estimate of Contract and Construction Costs | | | A-19 | Modification to the Federal Project | | | | Optimization of Taper Length | A-38 | | A-20 | Modification to the Federal Project Fill Volumes and Hardbottom Coverage . | A-39 | | A-21 | Estimate of Contract and Construction Costs Ft. Lauderdale | A-41 | | A-22 | Estimate of Contract and Construction Costs Pompano Beach/LBTS | | | A-23 | Estimate of Contract and Construction Costs Segment II | A-43 | | A-24 | Renourishment Interval Optimization for the Implementation of the Reevaluated | | | | Federal Project | A-44 | | A-25 | Estimate of Contract and Construction Costs Segment II | | | A-26 | Estimate of Contract and Construction Costs | A-47 | | A-27 | Estimate of Contract and Construction Costs | A-48 | | A-28 | Summary of Project Costs | A-49 | | A-29 | Summary of Project Costs | A-5(| #### APPENDIX A ## ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT SEGMENT II #### **Table of Contents** #### List of Figures | <u>Figure No.</u> | | | |-------------------|--|----| | A-1 | Project Location Map | 2 | | A-2a | Example DOC for Pompano Beach/Lauderdale-by-the-Sea A | | | A-2b | Example DOC for Ft. Lauderdale | -9 | | A-3a | Pompano Beach/Lauderdale-by-the-Sea Shoreline and Volumetric | | | | Change Rates | 13 | | A-3b | Ft. Lauderdale Shoreline and Volumetric Change Rates | 13 | | A-4 | Broward County Storm Surge Frequency Curve | 22 | | A-5 | EST Shoreline Recession | 29 | | A-6 | Re-Evaluated Federal Project and Proposed Modifications | | | | to the Federal Project | 31 | | | List of Sub-Appendices | | | Sub-Appendix | <u>c No.</u> | | | A-1 | Cross-Sections | | | A-2 | Detailed Cost Estimates for Re-Evaluating the Federal Project Width | | | A-3 | Detailed Cost Estimates for Evaluation of the Width of the Modification to | | | | the Federal Project | | | A-4 | Detailed Cost Estimates for Evaluation of the Project Length of the Modification | | | | to the Federal Project | | | A-5 | Detailed Cost Estimates Used for Determining the Optimal Renourishment | | | | Interval of the Implementation of the Federal Project | | | | | | # APPENDIX A ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT SEGMENT II #### PROJECT AUTHORITY A-1. House Document 91/89/1 (USACE, 1963) describes the erosion along Broward County's shoreline. The Broward County erosion control project was authorized by the River and Harbor Act of 1965 (PL 89-298). The problem area identified between the Hillsboro Inlet to Port Everglades segment was 3.0 miles long, and had as its north limit 2,000 feet south of Hillsboro Inlet (R-31 + 650 ft.) and its south limit approximately 2,500 feet south of the Pompano Beach city limits (R-48 + 700 ft.). The original plan did not recommend restoration of the beaches south of this project area, although it recommended periodic nourishment for the remainder of the reach on an as needed basis. #### PROBLEM IDENTIFICATION A-2. The authorized project calls for a 75 to 125 foot extension of the ECL in Pompano Beach and Lauderdale-by-the-Sea. The present shoreline breaches this design width and the present nourishment interval has lapsed. While Ft. Lauderdale's beaches experience lower erosion rates than Pompano Beach and Lauderdale-by-the-Sea, the beach now requires periodic nourishment. The objectives of this appendix include quantification of existing erosion problems and the design of corrective measures. Quantification efforts involved analysis of historical shoreline positions, estimates of alongshore transport rates, predicted cross-shore processes due to storms, and equilibrium profile response. The results of these efforts constitute the basis of design of the renourishment for Pompano Beach/Lauderdale-by-the-Sea and for the extension of the project into Ft. Lauderdale. #### PROJECT LOCATION A-3. Segment II of the Broward County Shore Protection Project is located 23 miles north of Miami Beach on the southeastern coast of Florida. This segment of the Broward County Federal project consists of 11.3 miles of Atlantic Ocean shoreline from Hillsboro Inlet south to Port Everglades Inlet (Figure A-1). The segment is located on a barrier island entirely within Broward County. The municipalities within the segment include Pompano Beach, Sea Ranch Lakes, Lauderdale-by-the-Sea, and Ft. Lauderdale. For purposes of analyses presented in this appendix, the segment is subdivided into reaches (Figure A-1). PROJECT LOCATION MAP #### NATURAL FORCES #### WINDS AND TIDES - A-4. Local winds are the primary generating mechanism of short period waves in the project area. Typical prevailing winds are from the east through the southeast. During winter months (December through March), winds are often out of the northwest and north. Low pressure cold fronts generally traverse the continental United States from west to east. Severe storms associated with these fronts can cause extensive beach erosion and shorefront damage. The summer months (June to September) are characterized by tropical weather systems traveling east to west in the lower latitudes. These tropical systems can develop into tropical storms and hurricanes, which can generate devastating winds, waves and storm surge. Southeast tradewinds make up the typical summer wind climate. - A-5. Daily onshore-offshore breezes associated with the differential heating of land and water masses are common within the study area. While these breezes play a significant role in local weather patterns, they are not an appreciable cause of sediment movement in the nearshore area. - A-6. Tides in the project area are primarily semi-diurnal. The mean tidal range for Segment II is 2.6 feet. #### **NEARSHORE CURRENTS** A-7. The primary currents in the nearshore region are wave-induced longshore currents. These currents are driven by the transformation of obliquely incident waves in the surfzone. The magnitude of the longshore current is generally greatest in the region immediately landward of the point of depth-induced wave breaking, and is primarily a function of the local wind and wave climate. The longshore currents are primarily from north to south. There have been no direct measurements of wave-induced longshore currents in Segment II. #### **WAVES** A-8. The waves experienced in Broward County are primarily caused by local wind patterns, although some long-period swells from more distant northeast and east events are observed during winter months. The proximity of the Great Bahama Banks to the South Florida coast prevents the development of large waves from the southeast. The largest waves reaching Broward County arrive from the northeast and east. Many of these larger waves are typically generated in weather disturbances far off in the North Atlantic Ocean, while some of the northeast wave
climate is caused by frontal winds. The more regular eastern wave set is generated by the daily onshore-offshore breeze discussed earlier. These shore-perpendicular waves, although frequent, are not large because of the short duration of the driving winds. The frequency of waves from the southeast (20%) is largely caused by the summer prevailing tradewinds. These winds are the primary driving force behind the northward littoral drift thought to occur during the summer months. The remaining waves recorded at Broward County are predominantly the result of frontal activity. A-9. The principal forcing mechanism behind beach erosion is the dissipation of energy (and corresponding transport of sand) as waves transform in the nearshore. Wave height, period, and direction as well as the water level during storm events are the most important factors influencing the project shoreline. Since the 1980's, the U.S. Army Engineer, Waterways Experiment Station's Coastal Engineering Research Center has executed a series of wave hindcast studies for the Atlantic and Gulf Coasts of the United States. The 20-year long hindcasts used in this study represent conditions that existed between 1976 and 1995. For this investigation, hindcast results compiled in WIS Report 33 (Brooks and Brandon, 1995) were used. This updated hindcast includes wave information for both extratropical storms and tropical cyclones. A-10. The wave statistics used for this analysis were obtained from Station A2010 (WIS Report 33) located at latitude 26.25° N and longitude 80.0° W. This station is roughly 10 miles offshore, where the waves are deep water waves. Tables A-1 to A-3 summarize the hindcast wave results for Station A2010. Table A-1 is a summary of the mean significant wave by month and year for the 20-year period. This table is useful in showing the distribution of wave height throughout the year. Table A-2 shows the largest significant wave height and period by month and year. The percent occurrence of wave height and period for all directions is shown in Table A-3. #### YEARLY DEPTH LIMIT A-11. For natural sand beaches, a useful coastal processes parameter is the yearly depth limit of the active nearshore profile. This is also referred to as the depth of closure (DOC). Beyond this depth only negligible sand movement is expected. Hallermeier (1978) has developed a procedure for estimating the depth of closure, d_c . This depth is based on the approximate extreme wave condition for nearshore significant waves, and may be calculated by: $$d_c = 2.28 H_e - 68.5 (H_e^2/gT_e^2)$$ where: H_e = nearshore extreme significant wave height (in meters) T_e = nearshore extreme significant wave period (in seconds) g = acceleration of gravity constant, 9.81 m/sec.² A-12. The extreme nearshore significant wave height, H_e, is defined as the "effective" wave height, which has a 0.137% probability of occurring. This wave height is related to the deep water mean wave as follows (Dean & Dalrymple, 1996): $$H_e = H_{mean} + 5.6\sigma$$ where σ is the standard deviation of annual wave data (in meters). A-13. The mean wave height, from the WIS hindcast data (Table A-2), is 1.0 m and the standard deviation is 0.6 m. The nearshore extreme significant wave period used is the wave period Table A-1 Wave Height (in meters) by Month and Year (WIS Station A2010) | YEAR | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | MEAN | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | 1976 | 1.3 | 1.1 | 1 | 1 | 0.9 | 0.7 | 0.4 | 0.7 | 0.5 | 1.4 | 1.3 | 1.5 | 1 | | 1977 | 1.2 | 1 | 1.1 | 1.5 | 0.9 | 0.4 | 0.5 | 0.9 | 0.6 | 1 | 1.4 | 1.2 | 1 | | 1978 | 1.2 | 1.3 | 1.1 | 0.9 | 0.7 | 0.6 | 0.6 | 0.5 | 0.8 | 1.5 | 1.3 | 1.5 | 1 | | 1979 | 1.7 | 1.3 | 1.4 | 1.4 | 1 | 8.0 | 0.6 | 0.5 | 1.4 | 0.9 | 1.6 | 1.4 | 1.2 | | 1980 | 1.1 | 1.5 | 1.2 | 0.9 | 8.0 | 0.6 | 0.4 | 8.0 | 0.6 | 0.9 | 1.4 | 1.3 | 1 | | 1981 | 1 | 1.7 | 1.5 | 1 | 0.7 | 0.7 | 0.5 | 8.0 | 0.9 | 1.1 | 1.2 | 1 | 1 | | 1982 | 1 | 0.9 | 1 | 8.0 | 0.9 | 0.7 | 0.4 | 0.5 | 0.7 | 1.1 | 1.2 | 1.2 | 0.9 | | 1983 | 0.9 | 1.5 | 1.2 | 1.1 | 0.9 | 0.6 | 0.5 | 0.5 | 1 | 1.2 | 1 | 1.4 | 1 | | 1984 | 1.7 | 1.2 | 1.2 | 1 | 1.1 | 0.7 | 0.6 | 0.5 | 1.2 | 1.5 | 1.8 | 1.3 | 1.1 | | 1985 | 1 | 1.4 | 1.1 | 1.1 | 0.6 | 0.5 | 0.5 | 0.7 | 1.4 | 1 | 1.4 | 1.3 | 1 | | 1986 | 1.3 | 1 | 1.5 | 0.9 | 1.1 | 0.6 | 0.4 | 8.0 | 0.9 | 1.1 | 1.2 | 1.4 | 1 | | 1987 | 1.3 | 1.1 | 1.7 | 0.9 | 0.9 | 0.6 | 0.6 | 0.6 | 0.5 | 1.3 | 1.3 | 1 | 1 | | 1988 | 1.4 | 1.1 | 1 | 0.9 | 8.0 | 8.0 | 0.6 | 0.5 | 0.9 | 1 | 0.9 | 0.9 | 0.9 | | 1989 | 0.9 | 1 | 1.1 | 0.8 | 0.6 | 0.6 | 0.4 | 0.5 | 8.0 | 1 | 0.7 | 0.9 | 8.0 | | 1990 | 0.9 | 1.3 | 1.2 | 1.1 | 8.0 | 0.6 | 0.6 | 0.4 | 0.7 | 1 | 1.1 | 1.1 | 0.9 | | 1991 | 0.9 | 1 | 1 | 1 | 0.9 | 0.6 | 0.4 | 0.5 | 0.6 | 1.1 | 1.1 | 1 | 0.9 | | 1992 | 1 | 0.9 | 0.9 | 1 | 8.0 | 0.6 | 0.6 | 0.6 | 0.7 | 1 | 1.4 | 1.1 | 0.9 | | 1993 | 1.3 | 1.2 | 1.3 | 1.1 | 1 | 0.7 | 0.4 | 0.6 | 0.7 | 8.0 | 1.3 | 1.1 | 1 | | 1994 | 1.4 | 1.2 | 1 | 1.1 | 8.0 | 0.6 | 0.7 | 0.7 | 8.0 | 1 | 1.3 | 1.3 | 1 | | 1995 | 1 | 1 | 1.3 | 0.9 | 0.8 | 0.7 | 0.6 | 1 | 0.9 | 1.3 | 1.1 | 1.1 | 1 | | MEAN | 1.2 | 1.2 | 1.2 | 1 | 0.8 | 0.6 | 0.5 | 0.6 | 0.8 | 1.1 | 1.3 | 1.2 | | Table A-2 Largest Wave Height (in meters) by Month and Year (WIS station A2010) | YEAR | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |------|--|---------|------------------------|--------|-----------|------------|-------------|----------|-----------|----------|-----|-----| | 1976 | 3.9 | 3.6 | 3.7 | 2.7 | 3.1 | 1.2 | 0.8 | 2.1 | 0.9 | 3.7 | 3.2 | 3.9 | | 1977 | 2.5 | 2.3 | 3.4 | 4.1 | 2.9 | 1.2 | 1.1 | 2.5 | 2.1 | 2.5 | 4.2 | 3.2 | | 1978 | 3.2 | 3.7 | 3.2 | 2.6 | 2.5 | 3.2 | 1.9 | 1.3 | 1.7 | 4.2 | 3.5 | 5 | | 1979 | 5.6 | 2.8 | 4.4 | 4.2 | 2.5 | 2.8 | 2.6 | 1.2 | 7.3 | 2.8 | 4.1 | 3.7 | | 1980 | 2.7 | 4.4 | 2.9 | 2.8 | 2.2 | 1.8 | 1.4 | 4.6 | 1.4 | 2.1 | 3.4 | 3 | | 1981 | 3.4 | 4.8 | 3.2 | 3.4 | 1.8 | 1.7 | 1.4 | 4.1 | 1.6 | 3 | 3.2 | 2.6 | | 1982 | 3 | 2.7 | 4.1 | 2.5 | 1.8 | 2.7 | 1.7 | 1.2 | 1.2 | 2.7 | 3.2 | 3.1 | | 1983 | 2.7 | 4.3 | 5.2 | 3.2 | 2.1 | 1.2 | 1.9 | 2.7 | 2.9 | 3.6 | 3.3 | 5.1 | | 1984 | 6.4 | 3.4 | 4 | 2.1 | 2.9 | 1.8 | 1.3 | 2.3 | 5.1 | 3 | 5.1 | 3.4 | | 1985 | 3 | 4.1 | 4.1 | 3.9 | 1.3 | 1.9 | 4 | 2.2 | 3.6 | 2.4 | 6.2 | 3.8 | | 1986 | 4.7 | 3.3 | 4 | 2.1 | 2.5 | 1.5 | 1.3 | 2.1 | 1.9 | 3.6 | 3.1 | 4.1 | | 1987 | 4.7 | 2.8 | 5.2 | 2.2 | 3.4 | 2.6 | 1.6 | 1.4 | 0.9 | 3.3 | 3.4 | 3.3 | | 1988 | 4 | 2.6 | 2.3 | 2.5 | 2.1 | 2.9 | 1.4 | 2 | 3.4 | 2.4 | 2.5 | 2.1 | | 1989 | 2.3 | 2 | 3.7 | 1.4 | 1.8 | 1.1 | 0.9 | 1.8 | 2.2 | 2.4 | 1.6 | 2 | | 1990 | 2.2 | 3.1 | 3.4 | 2.6 | 1.9 | 1.2 | 1.4 | 0.9 | 1.1 | 2.4 | 3.4 | 3.5 | | 1991 | 2.6 | 2.1 | 3.3 | 2.5 | 3.5 | 1.7 | 1 | 1.3 | 1.7 | 2.8 | 2.2 | 4 | | 1992 | 2.5 | 1.8 | 2.7 | 2.7 | 1.6 | 1.3 | 1.1 | 6.1 | 1.3 | 3 | 3.1 | 2.1 | | 1993 | 3.9 | 2.5 | 5.1 | 2.5 | 2 | 1.8 | 0.9 | 1.6 | 2.1 | 2.8 | 2.3 | 3.5 | | 1994 | 3.1 | 4 | 3.6 | 2 | 2.7 | 1.2 | 1.4 | 1.5 | 1.6 | 2.8 | 5.7 | 3.6 | | 1995 | 3.1 | 1.8 | 2.8 | 1.9 | 1.3 | 1.9 | 2.6 | 4.6 | 1.4 | 2.7 | 1.9 | 2.5 | | | MEAN SDE | CTRAL W | AVE HEIG | HT (m) | | | | | 1 | | | | | | | | PERIOD (s | | | | | | 7.6 | | | | | | | | 2.5 DEGRE | | R) DIRECT | ION BAND | (den) | | 7.0
45 | | | | | | | | | | | | (ucg) | | 0.6 | | | | | | STANDARD DEVIATION OF WAVE Hmo (m) STANDARD DEVIATION OF WAVE TP (sec) | | | | | | | | 3.6 | | | | | | LARGEST WAVE Hmo (m) | | | | | | | | 7.3 | | | | | | | | ιο (III)
ΓΕD WITH I | ARGEST | WAVE Hm | o (sec) | | | 7.3
11 | | | | | | | | SSOCIATE | | | ` ' | ea) | | 50 | | | | | | | | o OCCURR | | WOLOT W | AVE 110 (u | ~9 <i>)</i> | 12:00 pm | Septembe | r 3 1070 | | | Table A-3 Percent Occurance (x1000) of Wave Height and Period for All Directions (WIS Station A2010) | WAVE | | | | PEAK I | PERIOD | (IN SEC | ONDS) | | | | | |-------------|---|-------|-------|--------|--------|---------|-------|--------|--------|-------|-------| | HEIGHT (M) | <4.0 | 4.0 - | 5.0 - | 6.0 - | 7.0 - | 8.0 - | 9.0 - | 10.0 - | 11.0 - | >12.0 | TOTAL | | HEIGHT (WI) | <4.0 | 4.9 | 54.9 | 6.9 | 7.9 | 8.9 | 9.9 | 10.9 | 11.9 | >12.0 | TOTAL | | .0099 | 6440 | 12005 | 6493 | 4827 | 4553 | 4409 | 3723 | 3406 | 3292 | 11486 | 60634 | | 1.00-1.99 | | 1632 | 8018 | 9079 | 2883 | 1887 | 1803 | 1131 | 918 | 4664 | 32015 | | 2.00-2.99 | | | 30 | 450 | 2648 | 1579 | 297 | 224 | 165 | 556 | 5949 | | 3.00-3.99 | | | 1 | | 58 | 402 | 506 | 46 | 15 | 59 | 1087 | | 4.00-4.99 | | | 3 | | | 20 | 121 | 77 | 11 | 1 | 233 | | 5.00-5.99 | | | | | | | 8 | 10 | 23 | 5 | 46 | | 6.00-6.99 | | | | | | | | 8 | | 3 | 11 | | 7.00-7.99 | | | | | | | | | 1 | | 1 | | 8.00-8.99 | | | | | | | | | | | 0 | | 9.00-9.99 | | | | | | | | | | | 0 | | 10.00+ | | | | | | | | | | | 0 | | TOTAL | 6440 | 13637 | 14545 | 14356 | 10142 | 8297 | 6458 | 4902 | 4425 | 16774 | | | | | | | | | | | | | | | | | MEAN $Hmo(M) = 1.0 LARGEST Hmo(M) = 7.3 MEAN TP(SEC) = 7.6$ | | | | | | | | | | | associated with the largest wave, which is 11.0 sec (Table A-2). Using the above values and equations, the predicted depth of closure is 29.3 feet. A-14. The depth of closure was also calculated using the Birkemeier equation (Birkemeier, 1985). This approach typically provides a more reasonable estimate, compared to Hallermeier's approach, which usually over-predicts the depth of closure. The Birkemeier equation is as follows: $$d_c = 1.75 \text{ H}_e - 57.9 (\text{H}_e^2/\text{gT}_e^2)$$ A-15. This approach yields a depth of closure of 22.5 feet, which is a more reasonable estimate than Hallermeier's, but it is still deeper than the inner reef. This is an indication that sand could be lost offshore, but these depths of closure are not recommended for use in the design of Segment II beaches. A-16. Analysis of the 1983 Pompano
Beach/Lauderdale-by-the-Sea fill project performance, historic beach profiles for Ft. Lauderdale, and the nearshore hardbottom locations suggest that there is not a single DOC. The DOC was individually determined for each profile line by comparing beach profiles and determining at what depth the profiles converge. For Pompano Beach/Lauderdale-by-the-Sea, the pre-construction 1983 beach profiles were compared against the 1983 post-construction, 1993, and 1998 beach profiles (Sub-Appendix A-1). For example, Figure A-2a shows that for R-38 the DOC is 13.5 feet NGVD. The DOCs for Ft. Lauderdale were determined by comparing the 1980, 1993, and 1998 measured beach profiles. Since there has never been a nourishment project in Ft. Lauderdale, the DOCs are entirely based upon historic movement of the individual profile lines. An example profile (R-59) is shown in Figure A-2b, which shows a DOC of 13.0 feet NGVD. A-17. The DOCs used for engineering analysis are shown in Table A-4. The overall average DOC for Reaches 2 and 3 is 13.4 feet NGVD. The average DOC for Ft. Lauderdale's Reach 3 is 14.4 feet NGVD, which is 1.8 feet deeper than the DOC for Reach 2. This is due to the influence of the inter-reef flats. In general, the beach profiles truncate on a reef flat for Pompano Beach/Lauderdale-by-the-Sea. The beach profiles for Ft. Lauderdale truncate near the reef, where there is, generally, higher relief. #### **SEA LEVEL RISE** A-18. The geological record of historic sea level variations indicates that both increases and decreases in global sea level have occurred. Some authorities claim that evidence indicates our planet may be entering a new ice age, which would result in a lower sea level. Others argue that increasing atmospheric concentrations of carbon dioxide and other gases are causing the earth to warm, contributing to a sea level rise. Such changes to absolute global sea level change are known as eustatic sea level change. The sea level rise rate for this study is 0.0075 ft/yr, based on data at Miami Beach (Lyles et al., 1988). For a 50-year project life, the sea level is predicted to rise 0.38 feet, but it is predicted to rise only 0.14 feet for the remaining 19 years of the project. #### Example Depth of Closure for Pompano Beach/Lauderdale-by-the-Sea (R38) Figure A-2a #### **Example Depth of Closure for Ft. Lauderdale (R59)** Figure A-2b TABLE A-4 Estimated Depth of Closure | Rea | ch 2 | Reach 3 | | | |-----------|-------------------------------|----------|--------------------|--| | Pompano E | Beach/LBTS | (Ft. Lau | derdale) | | | | $\mathrm{DOC}^{(\mathrm{I})}$ | | DOC ⁽¹⁾ | | | Monument | (-ft NGVD)_ | Monument | (-ft NGVD) | | | R36 | 12.0 | R54 | 13.5 | | | R37 | 15.0 | R55 | 15.5 | | | R38 | 13.5 | R56 | 15.0 | | | R39 | .12.5 | R57 | 15.5 | | | R40 | 14.0 | R58 | 15.5 | | | R41 | 13.0 | R59 | 13.0 | | | R42 | 10.0 | R60 | 14.0 | | | R43 | 10.5 | R61 | 12.0 | | | R44 | 9.5 | R62 | 15.0 | | | R45 | 12.0 | R63 | 14.5 | | | R46 | 12.5 | R64 | 15.5 | | | R47 | 13.0 | R65 | 14.5 | | | R48 | 11.0 | R66 | 14.5 | | | R49 | 11.0 | R67 | 14.0 | | | R50 | 11.0 | R68 | 14.0 | | | R51 | 13.0 | R69 | 15.0 | | | R52 | 16.5 | R70 | 16.5 | | | R53 | 14.0 | R71 | 16.0 | | | | | R72 | 12.0 | | | Average | 12.4 | R73 | 13.0 | | | | | R74 | 10.0 | | | | | | | | | | | Average | 14.2 | | | Overall | Average | 1. | 3.4 | | (1) Depth of Closure (DOC) determined by historic profile convergence A-19. In 1995, the U.S. Environmental Protection Agency (EPA) published a report entitled *The Probability of Sea Level Rise* (Titus and Narayanan, 1995). This report provides sea level information in a form that can be incorporated into engineering designs, decision analyses, and legal opinions. The report presents a methodology for estimating sea level rise at a particular location by simply adding the current rate of sea level rise (based on historical data) to a normalized projection. The normalized projections estimate the extent to which future sea level rise will exceed what would have happened if current trends simply continued. They are based on initial conditions which correspond to the year 1990. For this study Miami Beach, Florida was chosen as the best data site, as it is the location closest to Broward County for which historic water level information was available. The historic rate of sea level rise at Miami Beach was estimated as 0.0075 ft/yr (Lyles et al., 1988). #### SHORELINE EROSION AND RECESSION DUE TO SEA LEVEL RISE A-20. Experience indicates that as relative sea level rises, the shoreline will be subjected to increased flooding and profile recession. Bruun (1962) proposed a formula for estimating the rate of shoreline recession based on the local rate of sea level rise. This methodology also includes consideration of local topography and bathymetry. Bruun's approach assumes that with a rise in sea level, the beach profile will attempt to re-establish the same bottom depths relative to the surface of the sea that existed before the sea level rise. As a result, the beach profile shape relative to the mean water level will re-establish itself. If the longshore littoral transport in and out of a given shoreline area is equal, then the quantity of material required to reestablish the nearshore slope must be derived from erosion of the shore. Shoreline recession resulting from sea level rise can be estimated using Bruun's Rule, as defined below: x = ab/(h+d) where, b = x = shoreline recession (in feet) attributable to sea level rise. h = elevation of shoreline above NGVD (+9.0 feet berm). d = depth contour beyond which there is no significant sediment motion (13.4 feet, yearly depth limit). horizontal distance of the active beach profile (average 500 feet) berm elevation to the depth contour d. a = specified relative sea level rise for time period t. A-21. This procedure is only used for estimating long term changes and not as a substitute for the analysis of historical shoreline and profile changes. Throughout the 50-year project the predicted shoreline recession is 8.4 feet (0.17 ft/yr). The shoreline is predicted to recede only 3.2 feet for the remaining 19 years. The recession rate of 0.17 ft/yr due to sea level rise is not significant when compared to historical shoreline change. Under the present sea level rise rate, it is not necessary to include sea level rise as a design parameter for the Federal project. The effect of sea level rise on the Federal project should be reconsidered if the rate of measured sea level rise increases significantly. #### COASTAL PROCESSES A-22. Segment II has been divided into four reaches based upon common shoreline and volumetric characteristics and political boundaries. The reaches are defined in Table A-5 (Figure A-1). All shoreline changes are based on the movement of the mean high water (MHW) with an elevation of +1.9 feet NGVD. The volumetric changes were calculated to -16 feet NGVD. This depth, instead of the DOC, was used so that the volumetric analysis could be compared to past studies, where a DOC of -16 feet NGVD was assumed. Shoreline and volumetric changes are summarized in Table A-6 and Figures A-3a and A-3b. TABLE A-5 REACHES DEFINED FOR SEGMENT II | Reach | Area | From | То | Length (mi) | |-------|--|------|-----|-------------| | 1 | Northern Pompano Beach | R25 | R36 | 2.0 | | 2 | Southern Pompano Beach & Lauderdale-by-the-Sea | R36 | R54 | 3.4 | | 3 | North Ft. Lauderdale | R54 | R74 | 4.0 | | 4 | South Ft. Lauderdale | R75 | R85 | 1.9 | | Total | | R25 | R85 | 11.3 | TABLE A-6 VOLUME AND SHORELINE CHANGE RATES | | | | Total | Average | |---------------|-----------|--------------|-----------------|--------------------| | Reach | Monuments | Reach Length | Volume Change | Shoreline | | | | (ft) | $(cy)^{(1)(2)}$ | Change | | | | | | $(ft/yr)^{(1)(2)}$ | | Reach 1 | R25-35 | 10,500 | 383,300 | 1.0 | | Reach 2a | R36-43 | 7,700 | -191,500 | -4.6 | | Reach 2b | R44-53 | 10,100 | 250,500 | -4.4 | | Reach 3 | R54-74 | 21,100 | -71,000 | -0.2 | | Reach 4 | R75-84 | 10,000 | 114,000 | 1.8 | | Reaches 2 & 3 | R36-74 | 38,900 | -12,100 | -3.0 | | | | | | | | Total | R25-84 | 59,300 | 485,300 | -1.3 | #### Notes: - (1) Reaches 1 and 2 data are from August 1983 to September 1998 - (2) Reaches 3 and 4 data are from October 1993 to September 1998 ## Pompano Beach/Lauderdale-by-the-Sea Shoreline and Volumetric Change Rates (August 1983 to September 1998) Figure A-3a ## Ft. Lauderdale Shoreline and Volumetric Change Rates (October 1993 to September 1998) Figure A-3b #### HISTORICAL SHORELINE CHANGE #### Pompano Beach/Lauderdale-by-the-Sea - A-23. <u>1929 to 1961</u>. The average annual recession rate for Pompano Beach and Lauderdale-by-the-Sea ranged from –4 to -8 ft/yr (USACE, 1994). There were regions of erosion and accretion, with the highest erosion downdrift of Hillsboro Inlet. The erosion at the inlet was due to inlet effects and sparse sand bypassing for this time period. - A-24. 1970 to 1978. Initial construction of the Federal project was completed in 1970 between R-31 and R-49. The average shoreline change of the constructed beach between R-32 and R-49 was -22 ft, resulting in an average shoreline recession rate of 2.8 ft/yr (USACE, 1981). The project area was erosional, except for an accretional section from R41 to R46. In the erosive sections (R32-R40 and R47-48), the average erosion rate was 6.3 ft/yr. Much of this erosion can be attributed to initial cross shore adjustment of the beach fill. - A-25. <u>1983 to 1988</u>. Following the 1983 nourishment project, the shoreline (from FDEP monuments R25 to R53) experienced recession of 56 ft at a rate of 11.2 ft/yr. The shoreline was accretional only from R29 to R32 at a rate of 3.6 ft/yr (USACE, 1994). The recession is mainly a result of the initial adjustment of the nourishment. - A-26. <u>1983 to 1998</u>. In Reach 1 (Figure A-1), the shoreline has accreted a total of 14.7
ft from 1983 to 1998, or an annual average of 1.0 ft/yr (Table A-6). Overall, this reach is accretional or stable, because of the increased transfer of sand across Hillsboro Inlet since the mid-1980's. The only erosional profile lines in this reach are from R25 to R27, adjacent to Hillsboro Inlet, probably due to the shadow effect of the inlet (Figure A-3a). - A-27. 1983 to 1988. Reach 2 (Figure A-1) has lost an average of 67 feet (4.5 ft/yr) of shoreline. There are areas within this reach (R49-52) which have erosion rates of more than 7.0 ft/yr (Figure A-3a). Some of the shoreline recession is the expected profile adjustment of the 1983 nourishment. The hotspot from R37 to R43 is a result of the shoreline headland feature in this area. Also, there is a gap in the reef system in the proximity of R48 (OAI/CPE, 1998). This potential offshore sink for sediment, may have contributed to the shoreline recession from R45 to R53. #### Ft. Lauderdale - A-28. <u>1947 to 1978</u>. From FDEP monuments R54 to R69, the shoreline retreated an average of 44.4 ft (1.4 ft/yr). No areas in this section of Ft. Lauderdale were accretional (USACE, 1981). - A-29. 1979 to 1993. Between 1979 and 1993, the average net shoreline change for Reach 3 (Figure A-1) has been 0.2 ft/yr (USACE, 1996). This reach has alternating regions of erosion and accretion. There are accretional sections from R54-R59, where the beach has accreted as much as 3 ft/yr, and R64 to R69, where there was mild accretion. R60 to R63 shows mild erosion and R70 to R74 was eroding at more than 1.5 ft/yr. - A-30. 1979 to 1993. Reach 4 is erosional where it borders with Reach 3, though the reach is accretional near Port Everglades due to the trapping of the southerly longshore sediment transport updrift of the inlet. The southern Ft. Lauderdale shoreline advanced an average total of 44.5 feet. The area closest to Port Everglades advanced an average total of 97.3 feet, while the region between R-75 to R-79 receded a moderate total of -8.3 feet. - A-31. <u>1993 to 1998</u>. From 1993 to 1998, the shoreline for Reach 3 (Figure A-1) has lost an average of 0.9 ft. (-0.2 ft/yr). Areas of erosion and accretion alternate alongshore, with a maximum advance of 17.7 feet at R-70 and a maximum recession of -19.5 feet and -15.3 feet at R-54 and R-66, respectively (Figure A-3b). Overall, this reach is moderately erosive. - A-32. 1993 to 1998. Reach 4 (Figure A-1) is accretional, advancing an average total of 8.7 feet (Figure A-3b). Profile lines R77 and R79 have eroded a total of 13.4 ft and 25.7 ft, respectively, and are the only receding profiles. Overall, this reach has been accretional for the past 50 years, due to the impoundment of sand updrift of Port Everglades entrance. #### HISTORIC VOLUME CHANGE #### Pompano Beach/Lauderdale-by-the-Sea - A-33. <u>1929 to 1978</u>. Pompano Beach and Lauderdale-by-the-Sea lost an average 33,300 cy/yr of sand to the -18 ft. NGVD contour (USACE, 1963). The 1970 project lost a total 292,000 cy of sand (to the -12 ft NGVD contour) in the 8 years after construction (USACE, 1994), which is 27% of the total volume placed. - A-34. <u>1983 to 1988</u>. The 1983 Nourishment Project lost a total of -82,700 cy of sand (16,500 cy/yr) to the -12 ft NGVD contour (USACE, 1994) by 1988. Nevertheless, the project losses to the -6 ft NGVD contour were 350,800 cy. This indicates that between the -6 ft NGVD and the -12 ft NGVD contour, 268,100 cy of material were gained. Though sand is expected to move from the dry beach to offshore as the beach fill equilibrates, profile comparisons suggest that the profiles also flattened. - A-35. <u>1983 to 1998</u>. From 1983 to 1998, Reach 1 gained 383,300 cy (25,600 cy/yr) of material (Table A-6) because the rate of mechanical inlet bypassing increased in the mid-1980's from the order of 60,000 cy/yr to 130,000 cy/yr (Table A-7). - A-36. 1983 to 1998. Reach 2 has gained 58,900 cy of material. Dividing the reach into two sections (Reach 2a and 2b) shows that from R36 to R43 the beach lost 191,500 cy (12,800 cy/yr) and from R44 to R53 the beach gained 250,500 cy (16,700 cy/yr) of sand (Table A-6). The loss in Reach 2a is consistent with shoreline retreat in this region, but the volume gain in Reach 2b is not consistent with the shoreline recession, which will be addressed in the next section. #### Ft. Lauderdale A-37. 1929 to 1978. Ft. Lauderdale beaches (From FDEP monument R54 to R84) have lost a total of 592,200 cy of material, or an average of 12,100 cy/yr (USACE, 1981). The area updrift of Port Everglades began to stabilize after 1961, when a submerged spoil bar was created north of the channel as a result of material dredged from the adjacent Port Everglades entrance channel. A-38. 1979 to 1993. From 1979 to 1993, Reach 3 gained a total of 52,000 cy of sand, but there is an erosional area from R64-R66, which lost 289,200 cy of sand (USACE, 1996). Some of the accretion may be attributed to spreading losses of the 1983 Pompano Beach/Lauderdale-by-the-Sea Project. A-39. <u>1979 to 1993</u>. Reach 4 has gained a total of 83,100 cy of sand from 1979 to 1993. Though this reach is overall accretional due to updrift effects of Port Everglades, there was a highly erosive area form R75 to R78 (USACE, 1995) which lost 154,800 cy of material. The shoreline recession and volume loss from R75-R78 may be related to a discontinuity in the reef line (OAI/CPE, 1998). A-40. <u>1993 to 1998</u>. From 1993 to 1998, Reach 3 lost a total of 71,000 cy of sand (Table A-6). Only a few profile lines showed accretion, most significantly at R69 to R71 and R74 to R75 (Figure A-3b). A-41. <u>1993 to 1998</u>. Reach 4 continued to accrete 114,000 cy of sand due to the updrift effects of Port Everglades (Table A-6). Only one profile, R-84, showed a small amount of erosion (Figure A-3b). #### VOLUME CHANGE AND SHORELINE CHANGE CORRELATION A-42. For some areas in Segment II, changes in shoreline and sand volume do not correlate (USACE, 1995; OAI/CPE, 1998). Reach 2b shows volumetric accretion, but with significant shoreline recession (Figure A-3a). The lack of correlation may be caused by physical processes. The fill sand placed in 1970, or 1983 may have been finer than the native beach sands. Generally, finer sands create a flatter beach profile, causing increased sand deposition offshore. The Structural Stabilization Study (OAI/CPE, 1998) observed that some profiles were not in equilibrium prior to the 1983 renourishment, with a steep, highly eroded profile. The 1983 nourishment provided enough sand to bring the submerged portion of the active beach back towards equilibrium, but with a disproportionate loss from the upper profile. In either case, the beach needs to be renourished in spite of the volumetric accretion in the region. #### **INLET IMPACTS** A-43. Hillsboro Inlet and Port Everglades' entrance have positive impacts on the Pompano Beach-Ft. Lauderdale segment. Typically, beaches downdrift of an inlet are erosional, unless the sand that accumulates on the updrift beach and in the inlet can be transferred to the downdrift beach. Material is mechanically bypassed around Hillsboro Inlet to Pompano Beach, and the rate has increased since the mid-1980's (Table A-7). The bypassing rate for 1989-1998 (134,300 cy/yr) is more than double the 1979-1988 (64,800 cy/yr) rate. This rate is maintaining northern Pompano Beach (Reach 1) which it was erosional in prior decades. The 1983-1998 volumetric change for Reaches 1, 2a, and 2b was 442,200 cy of accretion. During this timeframe bypassing was 1,849,400 cy. It is recognized that a small amount of sand (about 10,000 cy/yr) returns to the inlet (CPE, 1992) as a result of northerly transport. The wave-induced loss of sand on Reaches 1, 2a, and 2b between 1983 and 1998 is equal to the measured gain (442,200 cy) minus the net bypassing (1,699,400) or -1,257,200 cy. TABLE A-7 HILLSBORO INLET DREDGE AND BYPASSING VOLUMES (cy) | YEAR | QUANTITY | YEAR | QUANTITY | |-------------------------------|--------------------------------------|-------------------|---------------------------------------| | 1979 | 22,000 | 1989 | 136,500 | | 1980 | 25,000 | 1990 | 167,900 | | 1981 | 25,000 | 1991 | 93,600 | | 1982 | 70,000 | 1992 | 160,100 | | 1983 | 51,100 | 1993 | 161,700 | | 1984 | 60,300 | 1994 | 162,400 | | 1985 | 108,800 | 1995 | 138,500 | | 1986 | 134,000 | 1996 | 139,100 | | 1987 | 62,200 | 1997 | 100,500 | | 1988 | 90,200 | 1998 | 82,400 | | SUB-TOTAL (1979
AVERAGE AN | -1988): 648,400
NUAL RATE: 64,800 | SUB-TOTAL (1989-1 | .998): 1,342,772
UAL RATE: 134,300 | TOTAL: (1979-1998) 1,991,172 AVERAGE ANNUAL RATE: 99,559 A-44. Port Everglades' entrance, with its long jetties, acts as a barrier and trap to sediment movement in southern Ft. Lauderdale (Reach 4). The realignment of the north jetty in 1980 increased the trapping capacity. The submerged spoil mound north of the inlet acts like a submerged jetty, further increasing the trapping capacity. The trapped sand has created a stable or accreting beach for almost two miles north of the inlet. #### **EXISTING SHORELINE STRUCTURES** A-45. The majority of the upland development of Pompano Beach, Lauderdale-by-the-Sea, and Ft. Lauderdale are protected by structures. Approximately 69% of the properties contain structures (USACE, 1996). The primary structures are low seawalls protecting private development with a setback from the water's edge (Table A-8). However, nearly a mile of Segment II is protected by seawalls over 10 feet in height. The improvements made to Highway A1A in Ft. Lauderdale in the late 1990's added a small seawall along the landward edge of the beach, increasing the small seawall length by 8,150 feet. Since the seawall is built only on a spread footer, it provides little protection against beach erosion and storm recession. Two derelict groins were identified near R-40 in Pompano Beach during a February 2000 field inspection. One groin
(remnants of the New River Inlet jetties) is located near R-79 in southern Ft. Lauderdale. Two fishing piers exist within the project area. TABLE A-8 STRUCTURAL ARMORING INVENTORY FOR SEGMENT II | | NUMBER | | | |---------------|------------|--------|---------| | ITEM | OF | LENGTH | PERCENT | | | STRUCTURES | (feet) | | | Wall: Small | 124 | 32,280 | 40.5% | | Wall: Med | 48 | 11,600 | 19.5% | | Wall: Large | 14 | 4,900 | 8.2% | | Rubble: Small | 5 | 690 | 1.2% | | Total | 191 | 41,320 | 69.4% | Note: Data Based on USACE (1995). #### **BEACH SLOPES** A-46. The Segment II beaches do not have a uniform sand grain size (SEAI, 1999) and a portion of the segment was renourished in 1983. Furthermore, sand is continually bypassed from Hillsboro Inlet, so due to the variety of beach materials, the equilibrium beach slopes are not uniform in Segment II. The traditional design methods used for the authorized project use a single template of the entire project area. A more accurate prediction of profile performance is achieved when actual profile slopes are considered by reach. The slopes are based upon the 1998 survey, were calculated for Reaches 2a, 2b and 3, and are shown in Table A-9. Equilibrium beach slopes should be similar to the 1998 slopes. TABLE A-9 AVERAGE BEACH CHARACTERISTICS | | | Beach Slopes (1V:xH) | | Authorized Sl | opes (1V:xH) | |----------|-----------|-------------------------|--------------------------------|---------------|--------------| | Location | Monuments | Berm to -2.5
ft NGVD | -2.5 ft to
-13.5 ft
NGVD | Onshore | Offshore | | Reach 2a | R36-43 | 13 | 28 | 15 | 30 | | Reach 2b | R44-53 | 14 | 35 | 15 | 30 | | Reach 3 | R54-74 | 11 | 29 | 15 | 30 | Note: 1) Beach slopes are based on 1998 data. #### **BORROW AREA COMPATIBILITY** A-47. A sediment compatibility analysis was conducted for each borrow area and the existing beach material. The composite grain size distributions were used to represent the potential offshore borrow areas (Appendix E). Appendix E identifies seven borrow areas that can be utilized for this project, though only Borrow Areas I and II will be considered for use in Segment II because of proximity of the borrow areas to the beach segments and compatibility. A-48. Sand is considered compatible with the existing beach if it has the same mean grain size or is coarser. However, if the beach fill material is finer than the existing material, an additional amount of fill material is necessary. The beach slope is a function of sand size; a beach with fine sand is more mildly sloped than a beach which has coarser sand. When fill material is finer than the existing sand, extra fill is necessary to account for the more mild beach slopes. A-49. For this study, a modified equilibrium method was used (Munez-Perez, et al, 1999). The equilibrium method employs a shape factor, which is a function of mean grain size (Dean, 1991), but, the equilibrium method does not take into account hardbottom or offshore reef features. The modified equilibrium method uses a shape factor that is a function of grain size, depth of hardbottom, and the cross-shore width of the hardbottom. The estimated overfill volumes (cy/ft of beach) are shown in Table A-10. Borrow Areas I and I are compatible with Segment's II beaches. #### **TABLE A-10** #### ESTIMATED OVERFILL DENSITY (cy/ft) | | | Reach 2a | Reach 2b | Reach 3 | |-------------|-----------------|----------|----------|----------| | Borrow Area | | (R36-43) | (R44-53) | (R54-74) | | Number | Grain Size (mm) | 0.27 | 0.29 | 0.33 | | I | 0.39 | 0.0 | 0.0 | 0.0 | | II | 0.31 | 0.0 | 0.0 | 0.0 | #### STORM SURGE - A-50. Storm surge is defined as the rise of the ocean surface above its astronomical tide level due to storm forces. The increased elevation is attributable to a variety of factors, which include waves, wind shear stress, and atmospheric pressure. An estimate of these water level changes is essential to the design of the berm elevation of a beach fill area. Higher water elevations will increase the potential for recession, long-term erosion, and overwash due to severe waves. - A-51. The major threats to the shoreline of Broward County are surge and waves caused by extra-tropical and tropical storms. Since 1960, major storms that have affected Broward County include Hurricane Donna (1960), Hurricane Cleo (1964), Hurricane Isbell (1964), Hurricane Betsy (1965), Hurricane David (1979), Hurricane Andrew (1992), Tropical Storm Gordon (1994), Tropical Storm Josephine (1996), Tropical Storm Mitch (1998), and Hurricane Irene (1999). Four notable northeaster storms that have influenced the Broward County shoreline occurred in March 1962, November 1984, October 1991 and October 1992. It is possible to classify and predict storm surge elevations for various storms through the use of historical information and theoretical models. - A-52. The Federal Emergency Management Agency (FEMA) has performed investigations to determine 10 to 100 year return period storm surge elevations for Broward County (USACE, 1995). The methodology used in this study was developed by the National Academy of Sciences. Assumptions made in the analysis include: 1) breaking wave heights are limited to 0.78 of the local still water depth, 2) the wave crest constitutes 70% of the wave height, and 3) waves are dissipated by features such as sand dunes, dikes and seawalls, buildings, and vegetation. Regeneration of wave heights over areas of large fetch was also considered. Figure A-4 includes the resulting surge elevations and frequency of occurrence for the Broward County coast. For the 100-year return interval, the maximum predicted crest elevation is 7.5 feet. - A-53. Higher frequency of occurrence storms and storm surge elevation for other meteorological induced water-level anomalies (i.e., northeaster storm types) were obtained from WIS Report 7 (USACE, 1995). Hindcasting of storm surges was performed utilizing historical wind and pressure fields. A-54. The FEMA hurricane surge curve is based on data points for the 10, 50, 100, and 500 year recurrence interval events. The WIS northeaster surge curve for Broward County is based on data points for the 2, 5, 10, 20 and 50 year recurrence intervals at Miami Beach, Florida. The WIS northeaster surge data does not include tide, therefore, since the normal duration of a northeaster is several days (i.e., several tidal cycles), a curve which provides the WIS northeaster surge height with a spring tide, a worst case scenario, is included on Figure A-4. The FEMA hurricane surge curve is extrapolated below the 10 year recurrence interval event and the WIS northeaster surge curve is extrapolated above the 50 year recurrence interval event. For this reason, considerable care should be used when selecting data points from the extrapolated portion of the curves. #### CROSS-SHORE SEDIMENT TRANSPORT A-55. Cross-shore sediment transport characteristics for the project area beaches were estimated using the Storm Induced BEAch CHange model, SBEACH (Larson and Kraus, 1989), which simulates beach profile changes resulting from varying storm waves and water levels. SBEACH has significant capabilities that make it useful for quantitative studies of beach profile response to storms. SBEACH version 3.0 is additionally capable of calculating the effect of nearshore hardbottom on profile evolution. A-56. A formal calibration and verification of the model within the project area could not be conducted due to the lack of historical profile data. As an alternative, a sensitivity analysis was conducted based on SBEACH coefficients used in previous studies within the South Florida Region. SBEACH was run on three profiles representative of the project area with storm input data from three separate storms. Sequential runs were conducted using each of the reported sets of calibration coefficients, and the resulting profile recession for each reach was tabulated (Table A-11). Based on these results the coefficient values used in Martin County (USACE, 1994) were adopted for this study, since these coefficients give results that are closest to the mean recession rates for all cases. The calibration procedure established the following values as the selected calibration parameters, a) transport rate coefficient (K) of 0.000015 m⁴/N, b) slope dependent coefficient (ε) of 0.0015 m²/s, and c) transport rate decay factor (LAMM) of 0.40 m⁻¹. FIGURE A-4 BROWARD COUNTY STORM SURGE FREQUENCY CURVE COAST OF FLORIDA STUDY - REGION III TABLE A-11 SENSITIVITY ANALYSIS FOR SBEACH CALIBRATION | | Distance from Pre-Storm MHW to Landward Limit | | | | | | | | |-------|---|-------|---------|----------|---------|-------|-------|------| | | | | of 0.5 | | | | | | | Reach | Storm | COFS | Default | AVG (ft) | SD (ft) | | | | | | E24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | R86- | H16 | 166.0 | 162.9 | 174.7 | 167.7 | 152.3 | 164.7 | 8.2 | | R99 | H31 | 157.4 | 159.9 | 166.0 | 163.2 | 163.8 | 164.1 | 4.5 | | | E24 | 41.0 | 43.3 | 41.0 | 41.5 | 41.4 | 41.6 | 1.0 | | R100- | H16 | 169.6 | 188.3 | 186.0 | 186.9 | 185.9 | 183.3 | 7.8 | | R104 | H31 | 201.5 | 224.9 | 214.6 | 206.4 | 214.2 | 212.3 | 8.9 | | | | | | | | | | | | | E24 | 0.0 | 41.7 | 39.1 | 38.8 | 38.5 | 31.6 | 17.7 | | R105- | H16 | 137.0 | 144.0 | 159.9 | 159.1 | 133.8 | 146.8 | 12.2 | | R128 | H31 | 132.7 | 142.2 | 136.0 | 130.0 | 138.4 | 135.9 | 4.8 | | | | | | | | | | | | Adjusted Calibration Parameters | | | | | | | |---------------------------------|----------|----------|----------|----------|----------|--| | Project | COFS | Default | Ponce | Brevard | Martin | | | $K (m^4/N)$ | 1.35E-06 | 1.75E-06 | 1.75E-06 | 1.70E-06 | 1.50E-06 | | | EPS (m^2/s) | 0.001 | 0.002 | 0.001 | 0.001 | 0.0015 | | | LAMM (m ⁻¹) | 0.5 | 0.4 | 0.5 | 0.5 | 0.4 | | A-57. The cross-shore sediment transport analysis procedure involved the use of the SBEACH model to perform multiple simulations of beach
recession due to historical tropical and extratropical storms. Since Reaches 1 and 4 are not being considered for nourishment, only two reaches were examined. Pompano Beach/Lauderdale-by-the-Sea extends from FDEP monument R36 to R53 (Reach 2). The Ft. Lauderdale segment extends from R54 to R74 (Reach 3). For each reach, one representative FDEP profile was adopted for use within the SBEACH simulations. For the Pompano Beach/Lauderdale-by-the-Sea section, R38 was adopted as the characteristic profile, and R64 was chosen for Ft. Lauderdale (Sub-Appendix A-1). A-58. <u>Joint-Probability Analysis of Storm-induced Beach Recession</u>. Proposed shore protection measures must be subjected to a benefit-cost analysis in order to assess whether Federal participation in the project is appropriate. Primary benefits are typically quantified in terms of the reduction of storm-induced damages to existing property and/or structures. In order to quantify those benefits, one must estimate a) the damage potential which exists without the proposed protection measures (i.e., for existing conditions), and b) the damage potential which exists with shore protection measures in place. Benefits are expressed as the reduction in storm- induced damages resulting from the presence of the shore protection measures. In order to account for risks and uncertainties inherent to the analysis procedure, methods were required in the form of recession versus frequency of occurrence relationships. The Empirical Simulation Technique (EST) (Borgman et al., 1992) was selected as the joint-probability analysis tool used to establish those relationships. The beach recession analysis procedure can be described by applying the following major tasks: - 1. Identify storm events that have impacted the study area. - 2. Construct or obtain the water surface elevation and wave field hydrographs characteristic of each of the identified storms while in the vicinity of the study site. - 3. Apply the numerical model, SBEACH, to estimate the beach recession associated with each of the storm events. - 4. Construct EST input data files using descriptive storm parameters and calculated recession values. - 5. Use the EST to generate multiple repetitions of multi-year scenarios of storm events and their corresponding beach erosion confidence limits. - 6. Apply the resulting recession-frequency curves as input to an appropriate economics based model for computation of damages, costs, and benefits. - A-59. The initial step in any storm-induced recession/frequency analysis is identification of all historical storms that have impacted the area of interest. For Atlantic coast sites, such as Broward County, the shoreline is subjected to both tropical cyclones (tropical depressions, tropical storms, and hurricanes) and extratropical storms (northeasters). While tropical storms are often characterized by very high wind, wave, and surge conditions, the longer duration of extratropical storms can result in beach erosion of equal or greater magnitude than the erosion caused by storms of tropical origin. Once the historical storms of interest are identified, corresponding storm surge hydrographs and wave condition time series must be extracted from appropriate data sources. For this application, those data sources consisted of the DRP storm surge database and the WIS hindcast wave database. A-60. Tropical Cyclone Selection. The tropical surge database developed by Coastal Hydraulics Laboratory (formerly CERC), which contains a record of 104 years of tropical storm activity, indicates that 12 tropical cyclones have significantly influenced the project area. This corresponds to a recurrence frequency of roughly one tropical cyclone every nine years. For this application, a significant influence implies the storm resulted in a surge of at least 1.64 feet at the site in question. The 12 storms identified for the project area are listed in Table A-12. Individual storm tracks and maximum surge elevations at all nearshore stations are available in the tropical cyclone database summary report (Scheffner et al., 1994). Wave conditions characteristic of tropical cyclones were computed in accordance with procedures specified in the Shore Protection Manual (USACE, 1984). Storm position and intensity values were specified based on information from the National Hurricane Center Tropical Storm Database. Tidal influence was accounted for by assuming that each storm event has an equal probability of occurring at any time during the tidal cycle. For this analysis, that assumption was simplified by allowing the onset of the storm conditions to coincide with four individual tidal phases. Tidal constituents of the project site were obtained from the Dredging Response Project (DRP) database for computation of tide elevations. The result of combining storm surge and tidal components of the total surge elevation is a four-fold increase in the number of individual storms used in the SBEACH analysis. TABLE A-12 TROPICAL STORMS WITH INFLUENCE ON BROWARD COUNTY | Storm Number | NHC Database Number | Date | | |--------------|---------------------|-----------------|--| | | (Name) | | | | 1 | 112 | 8/3/1899 | | | 2 | 127 | 8/4/1901 | | | 3 | 189 | 10/6/1909 | | | 4 | 276 | 9/11/1926 | | | 5 | 292 | 9/6/1928 | | | 6 | 296 | 9/22/1929 | | | 7 | 331 | 8/31/1933 | | | 8 | 353 | 8/29/1935 | | | 9 | 357 | 10/30/1935 | | | 10 | 461 | 9/4/1947 | | | 11 | 473 | 9/18/1948 | | | 12 | 629 | 8/20/1964(Cleo) | | A-61. Extratropical Storm Selection. Analysis of the nearshore water level estimates within the DRP extratropical storm database indicate storm surge levels significantly less than expected for this region. The maximum surge value, which roughly corresponds to a 16-year surge event, was determined to be only 0.48 feet. Based on this result, an alternate method was used to generate the necessary surge data for the SBEACH extratropical storm simulations. Each extratropical storm event was first identified within the WIS wave data for station A2010 for the time period from September 1977 to August 1993. Each storm was then ranked based on the maximum wave height of each storm event. This ranking was then used to assign a relative return period (frequency) to the event. The surge magnitude for each storm was then determined based on the FEMA surge curve for the region and the relative frequency of each storm. SBEACH input storm hydrographs were developed based on these surge magnitudes using the storm hydrograph algorithm in the Beach Fill Module software package. Based on this procedure, 13 extratropical storms were identified for use within the SBEACH simulations (Table A-13). This corresponds to a significant extratropical event every 1.2 years. Wave conditions corresponding to each of the extratropical storms were obtained from the WIS hindcast database, Station A2010. This deepwater wave data was subsequently transformed to nearshore conditions for the depth corresponding to the offshore depth of the profiles used in the SBEACH simulations. This transformation was accomplished using the WAVETRAN application within the Shoreline Modeling System (Gravens, 1992). TABLE A-13 EXTRATROPICAL STORMS WITH INFLUENCE ON BROWARD COUNTY | Storm | Date | Rank | Return Freq. | Surge (Feet) | |--------|----------|------|--------------|--------------| | Number | | | (Years) | | | 1 | 12/28/77 | 3 | 5.3 | 3 | | 2 | 1/17/78 | 8 | 2 | 2.3 | | 3 | 2/3/79 | 12 | 1.3 | 2.2 | | 4 | 11/20/79 | 9 | 1.8 | 2.3 | | 5 | 1/16/80 | 11 | 1.5 | 2.2 | | 6 | 11/25/80 | 4 | 4 | 2.8 | | 7 | 11/25/82 | 13 | 1.2 | 2.2 | | 8 | 12/30/82 | 1 | 16 | 4.6 | | 9 | 1/20/83 | 2 | 8 | 3.5 | | 10 | 11/22/83 | 5 | 3.2 | 2.6 | | 11 | 2/9/88 | 6 | 2.7 | 2.5 | | 12 | 10/29/90 | 10 | 1.6 | 2.2 | | 13 | 11/15/91 | 14 | 1.4 | 2.2 | A-62. In summary, the selection of storm events from the available databases resulted in the identification of 12 tropical cyclones and 13 extratropical storms that have influenced Broward County beaches. The tropical storm database encompasses those storms that occurred during the 104-year period from 1886 through 1989. The extratropical storm database includes 16 years of data, from September 1977 through August 1993. Estimated frequencies of occurrence for tropical cyclones and extratropical storms that impact the project shoreline are 0.12 and 0.83 storms per year, respectively. A-63. <u>SBEACH Model Results.</u> Beach recession for each of the extratropical and tropical storms for each tide phase was determined through application of SBEACH to each of the characteristic reach profiles. From these simulations, the beach recession for each storm was calculated for each reach. Throughout this discussion, recession is defined as the horizontal distance from the mean high water mark on the pre-storm profile to the most landward point where the vertical difference in pre- and post-storm profiles equals 0.5 feet. A-64. Significant beach recession was observed for the majority of storm simulations. Pompano Beach/Lauderdale-by-the-Sea showed a greater maximum recession compared to the Ft. Lauderdale reach. The beach face is milder for Pompano Beach/Lauderdale-by-the-Sea than it is for Ft. Lauderdale (Table A-9). A beach with a mildly sloped beach face will experience greater storm recession than steeper beaches. The tropical storm runs generally produced greater recession than the extratropical storms. Recession results are summarized in Table A-14. A-65. Overall, the SBEACH analysis produced appropriate data for the performance of the project cost-benefit analysis. The Empirical Simulation Technique (EST) (Borgeman et al., 1992) was selected as the joint-probability analysis tool used to establish the relative costs and benefits of the proposed shore protection measures. The relative frequency and level of crosshore recession due to storm damage was quantified based on the SBEACH results for input into the EST analysis. Table A-14 RECESSION RESULTS
FOR SBEACH ANALYSIS | Reach (Storm) | Mean Recession (feet) ⁽¹⁾ | Maximum Recession (feet) ⁽¹⁾ | |------------------------------------|--------------------------------------|---| | Pompano Beach/LBTS – Extratropical | 64 | 98 | | Pompano Beach/LBTS – Tropical | 90 | 215 | | Ft. Lauderdale – Extratropical | 43 | 87 | | Ft. Lauderdale Tropical | 78 | 188 | (1) All recession distances are referenced to Mean High Water. A-66. <u>EST Input Development</u>. The fourth step in the empirical simulation procedure involves preparation of the EST input files. These files contain input vectors, response vectors, and frequency of storm occurrence parameters. The values of the input parameters reflect the storm intensity. The response vector, in this application, quantifies the beach recession resulting from a given storm; and the storm frequency parameters are used to dictate the occurrence of extratropical and tropical storms throughout the multi-year life cycle analysis. A-67. The characteristics of individual tropical storms were defined as: (a) tidal phase, (b) closest distance from the eye to the project site, (c) direction of propagation at time of closest proximity, (d) central pressure deficit, (e) forward velocity of the eye, (f) maximum wind speed, and (g) radius to maximum winds. As noted, the response to each storm was defined as the beach recession modeled by SBEACH. The frequency of occurrence of tropical events that impact the project beaches was previously estimated at 0.12 events per year. This corresponds to one event every 8.6 years. A-68. Input vectors describing extratropical storms were defined as: (a) tidal phase, (b) storm duration, (c) maximum surge elevation, (d) wave height, and (e) wave period. The response vector was, of course, beach recession; and the frequency of occurrence of extratropical storms was previously estimated at 0.83 events per year. A-69. <u>EST Execution</u>. The fifth step of the EST is the execution of empirical simulation procedures to generate multiple repetitions of multi-year scenarios in which storm events may occur. For this application, 100 repetitive simulations of a 200-year period of storm activity were performed. Simulations of extratropical and tropical storm histories were performed separately. For each simulation, a 200-year tabulation was generated to include the number of storms that occurred during each year and the corresponding beach recession. This information provides the basis for calculation of return periods associated with various degrees of beach recession. A-70. The final step in the EST procedure is analysis of results and presentation of those results in a format suitable for subsequent probabilistic analyses. In this case, the EST results were used as input for an economic evaluation of the impacts of beach recession. The economic model estimates damage and repair costs (related to storm-induced beach recession) that would be incurred over a multi-year period if no project improvements were constructed. The economic model makes no distinction between extratropical and tropical storms; therefore, the tropical and extratropical EST results were combined to generate a single storm-induced recession versus frequency of occurrence relationship. The following algorithm was used to accomplish this combination of extratropical and tropical results: For a given recession value: $T_c = (1/T_t + 1/T_e)^{-1}$ Where: T_c denotes return period corresponding to the chosen recession T_t represents the tropical storm return period corresponding to the chosen recession. T_e equals the extratropical storm return period corresponding to the chosen recession. A-71. As expected, due to their grater frequency of occurrence, the extratropical storms dominate the results corresponding to lower return periods. The greatest recession values were characteristic of the most severe tropical cyclones (i.e., hurricanes). Return periods associated with levels of combined tropical and extratropical storm-induced beach recession are provided in Figures A-5A and A-5B. Standard deviations of the expected recession for the range of return periods are also presented. A-72. <u>Summary of Cross-Shore Transport Analysis</u>. The preceding information was provided to summarize how EST procedures were applied to this probabilistic analysis of cross-shore sediment transport in Broward County. This application generated frequency of occurrence relationships for storm-induced beach recession along Segment III of the Broward County shoreline, as tabulated above. The beach recession-frequency relationships were subsequently utilized as input to economic model for quantification of recession related damages to shorefront properties. FIGURE A-5a #### EST Recession (Pompano Beach/Lauderdale by the Sea) FIGURE A-5b **EST Recession (Ft. Lauderdale)** #### PROTECTIVE BEACH DESIGN AND COSTS A-73. This section addresses the beach design and costs in terms of (1) reevaluation of the Federal project; (2) implementation of the reevaluated Federal Project; (3) a modification to the Federal project; (4) the combined reevaluated project with the modification and (5) a permittable combined project. To reevaluate the Federal project, 1970 conditions were assumed for analysis of the preliminary NED plan for Pompano Beach/Lauderdale-by-the-Sea (R26-R53). The predicted conditions in 2002 (planned construction year) were used to determine the amount of fill necessary to implement the reevaluated preliminary NED plan in Pompano Beach/Lauderdale-by-the-Sea. Ft. Lauderdale is a modification to the Federal project, so fill volumes and costs were determined based upon an independent preliminary NED plan to be constructed in 2002 along with modified reevaluated Federal project (Figure A-6). ### REEVALUATION OF THE FEDERAL PROJECT (POMPANO BEACH/LAUDERDALE-BY-THE-SEA) - A-74. <u>Project Length</u>. The Federal project extends from Hillsboro Inlet (R-26) to the south through Lauderdale-by-the-Sea (LBTS) (R53) (Figure A-6). This is a total of 5.4 miles and includes Reaches 1 and 2. - A-75. Project Baseline. The project baseline for Pompano Beach (R-26 to R-49) is the 1970 MHW for the area from R32 to just south of R48 and the 1981 Erosion Control Line (ECL) from R26 to R32 and from R48 to R49. The ECL for LBTS (R50-53) was established as the 1983 MHW. Using these two ECLs to construct a single project will result in an inefficient, costly project. The project would have excessively large MHW extensions for LBTS, compared to Pompano Beach, which will result in adverse diffusion effects and excessive hardbottom coverage. To alleviate this problem, a baseline is used for LBTS, which is straight line extension of the Pompano Beach ECL to FDEP Monument R53. This baseline was discussed with the Jacksonville District prior to use. - A-76. <u>Berm Elevations</u>. The authorized berm elevation for this project is +9.0 feet NGVD, which is consistent with the natural berm elevation. - A-77. <u>Beach Widths</u>. While the beach width is optimized (NED plan) in Appendix C for the re-evaluation of the Federal project, design fill volumes, advance nourishment, hard bottom coverage, and project costs are needed for a variety of design widths. The beach widths used are in terms of ECL/baseline extensions and are from 75 feet to 125 feet in 25 foot increments. - A-78. <u>Design Fill Volume</u>. Based on guidance provided by the National Research Council's report on beach nourishment (National Research Council, 1995), design volumes presented here are based on nourishment of the entire active profile. The design volumes are calculated using profile translation. The design volumes for the above beach widths are shown in Table A-15. RE-EVALUTED FEDERAL PROJECT AND PROPOSED MODIFICATIONS TO THE FEDERAL PROJECT #### **TABLE A-15** ### RE-EVALUATION OF THE FEDERAL PROJECT DESIGN AND ADVANCE FILL VOLUMES AND HARD BOTTOM COVERAGE | | | | | Hardbottom | | |----------------|----------------|-----------|--------------|------------|-------------| | ECL/Baseline | Nourishment | Design | Advance Fill | Coverage | Annualized | | Extension (ft) | Interval (yrs) | Fill (cy) | (cy) | (acres) | Costs | | 75 | 5 | 1,857,000 | 935,000 | 6.7 | \$3,516,000 | | 100 | 5 | 2,476,000 | 935,000 | 12.2 | \$3,984,000 | | 125 | 5 | 3,096,000 | 935,000 | 20.9 | \$4,530,000 | - A-79. Advance Nourishment. The advance nourishment needed to maintain the design width is based upon volumetric erosion rates from 1983 to 1998 (Figure A-3a). The volumetric erosion rates used to determine the amount of advance nourishment utilize only the erosive profile lines because profile accretion is not an adverse effect on maintaining the design width. The profile erosion rates are smoothed using a 3 point running average so that advance fill can be placed more uniformly to prevent adverse fill diffusion and excessive hardbottom coverage. The background erosion and end loss erosion are 15,000 cy/yr and 172,000 cy/yr, respectively. - A-80. Since sand characteristics are not known for the beach or borrow areas used in 1970, overfill is estimated and included as a part of the design fill. The overfill ratio used applied to the design volumes is 1.15. The total advance nourishment needed for each design extension is in Table A-15 and is based on a 5 year nourishment interval. Nourishment intervals were optimized in Sub-Appendix A-2. - A-81. <u>Hardbottom Coverage</u>. The hardbottom coverage between R26 and R53 is based upon the DOC for each beach profile line and the hardbottom communities mapped in 1999 by Broward County. The expected hardbottom coverage for each design extension is shown in Table A-15. - A-82. <u>Project Costs</u>. Conservative price levels are used for the dredging of beachfill material. The mobilization/demobilization cost is \$1,000,000 and the unit cost of sand is \$6.50 or \$8.50/CY depending on the renourishment cycle (Table
A-16). This is based on hopper dredging with rock removal. It is estimated that the unit cost of sand for the initial construction in 1970 was \$6.50/CY. For subsequent renourishments prior to the year 2000, the unit cost of sand is estimated at \$6.50/CY. The renourishment scheduled for the year 2002 will be using borrow areas that are further away from the project. Therefore, the unit price for sand is \$8.50/CY. - A-83. Costs for project engineering and design, construction administration, maintenance, and project monitoring are estimated as a percentage of contract costs. For the initial nourishment the percentage is 10% and increases to 20% for subsequent renourishments (Table A-16). A contingency of 15% is included for all cost estimates. Table A-15 shows the annualized cost estimates for each design width used in reevaluating the Federal Project, the detailed cost estimates are shown in Sub-Appendix A-2. # Estimate of Contract and Construction Costs Pompano Beach/Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) 5 Year Renourishment Interval Project Life: 50 yrs | | Project Year | Unit Cost | Quantity | | | | | Renourishment | | | | | | |--|--|--|--------------------------------|---|---|--|---|--|--|---|--|---|--| | Item
Nourishment | 0 | Offit Cost | Quantity | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | | Mobilization/Demobilization | Ü | \$1,000,000 | 1 | \$1,000,000 | | | | | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6.50
\$300 | 3,411,810
84.7 | \$22,176,765
\$25,422 | | | | | | | | | | | Hard Bottom Mitigation (ac) | | \$300,000 | 12.2 | \$3,660,000 | | | | | | | | | | | 1st Renourishment | 5 | | | | | | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6.50 | 1
935,400 | | \$1,000,000
\$6,080,100 | | | | | | | | | | Beach Tilling (ac) | | \$300 | 84.7 | | \$25,422 | | | | | | | | | | Hard Bottom Mitigation (ac)
2nd Renourishment | 10 | | | | \$0 | | | | | | | | | | Mobilization/Demobilization | 10 | \$1,000,000 | 1 | | | \$1,000,000 | | | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6.50
\$300 | 935,400
84.7 | | | \$6,080,100
\$25,422 | | | | | | | | | Hard Bottom Mitigation (ac) | | φ300 | 04.7 | | | \$0 | | | | | | | | | 3rd Renourishment | 15 | 64 000 000 | 1 | | | | #4 000 000 | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6.50 | 935,400 | | | | \$1,000,000
\$6,080,100 | | | | | | | | Beach Tilling (ac) | | \$300 | 84.7 | | | | \$25,422 | | | | | | | | Hard Bottom Mitigation (ac)
4th Renourishment | 20 | | | | | | \$0 | | | | | | | | Mobilization/Demobilization | 20 | \$1,000,000 | 1 | | | | | \$1,000,000 | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6.50
\$300 | 935,400
84.7 | | | | | \$6,080,100
\$25,422 | | | | | | | Hard Bottom Mitigation (ac) | | φ500 | 04.7 | | | | | \$0 | | | | | | | 5th Renourishment | 25 | 64 000 000 | | | | | | | 64 000 000 | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6.50 | 1
935,400 | | | | | | \$1,000,000
\$6,080,100 | | | | | | Beach Tilling (ac) | | \$300 | 84.7 | | | | | | \$25,422 | | | | | | Hard Bottom Mitigation (ac)
6th Renourishment | 30 | | | | | | | | \$0 | | | | | | Mobilization/Demobilization | 00 | \$1,000,000 | 1 | | | | | | | \$1,000,000 | | | | | Beach Fill | | \$8.50
\$300 | 935,400
84.7 | | | | | | | \$7,950,900 | | | | | Beach Tilling (ac) Hard Bottom Mitigation (ac) | | \$300 | 04.7 | | | | | | | \$25,422
\$0 | | | | | 7th Renourishment | 35 | | | | | | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$8.50 | 1
935,400 | | | | | | | | \$1,000,000
\$7,950,900 | | | | Beach Tilling (ac) | | \$300 | 84.7 | | | | | | | | \$25,422 | | | | Hard Bottom Mitigation (ac)
8th Renourishment | 40 | | | | | | | | | | \$0 | | | | Mobilization/Demobilization | 40 | \$1,000,000 | 1 | | | | | | | | | \$1,000,000 | | | Beach Fill | | \$8.50 | 935,400 | | | | | | | | | \$7,950,900 | | | Beach Tilling (ac)
Hard Bottom Mitigation (ac) | | \$300 | 84.7 | | | | | | | | | \$25,422
\$0 | | | 9th Renourishment | 45 | | | | | | | | | | | ** | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$8.50 | 1
935,400 | | | | | | | | | | \$1,000,000
\$7,950,900 | | Beach Tilling (ac) | | | 84.7 | | | | | | | | | | | | | | \$300 | 04.7 | | | | | | | | | | \$25,422 | | Hard Bottom Mitigation (ac) | | \$300 | 64.7 | | | | | | | | | | \$25,422
\$0 | | Hard Bottom Mitigation (ac) Subtotal | | | 04.7 | \$26,862,187 | \$7,105,522 | \$7,105,522 | \$7,105,522 | \$7,105,522 | \$7,105,522 | \$8,976,322 | \$8,976,322 | \$8,976,322 | \$0
\$8,976,322 | | Hard Bottom Mitigation (ac) Subtotal Contingency | | 15% | 04.7 | \$4,029,328 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal | | 15% | | | | | | | | | | | \$0
\$8,976,322 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost | Perce | | | \$4,029,328 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency | Perce
0 | 15% | | \$4,029,328 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment | Perce
0
5 | 15%
entage of Contract
10% | Costs
1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A | 0 | 15%
entage of Contract | Costs | \$4,029,328
\$30,891,515 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&O+S&A 2nd Renourishment E&O+S&A E&O+S&A | 0
5
10 | 15%
entage of Contract
10% | Costs
1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment | 0
5 | 15%
Intage of Contract
10%
20% | Costs 1 1 1 1 | \$4,029,328
\$30,891,515 |
\$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4rd Renourishment E&D+S&A 4rd Renourishment | 0
5
10 | 15% Intage of Contract 10% 20% 20% | Costs 1 1 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828 | \$1,065,828
\$8,171,351 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A | 0
5
10
15 | 15%
Intage of Contract
10%
20% | Costs 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4rd Renourishment E&D+S&A 4rd Renourishment | 0
5
10
15 | 15% Intage of Contract 10% 20% 20% | Costs 1 1 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd | 0
5
10
15 | 15% ntage of Contract 10% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,346,448
\$10,322,771 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4rd Renourishment E&D+S&A 5rd Renourishment | 0
5
10
15
20
25 | 15% Intage of Contract 10% 20% 20% 20% | Costs 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,346,448 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 7th Renourishment E&D+S&A | 0
5
10
15
20
25
30
35 | 15% ntage of Contract 10% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,346,448
\$10,322,771 | \$1,346,448 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 8rd Renourishment E&D+S&A 8th | 0
5
10
15
20
25
30 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 5th Renourishment E&D+S&A 7th Renourishment E&D+S&A 8th | 0
5
10
15
20
25
30
35 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$1,346,448 | \$0
\$8,976,322
\$1,346,448
\$10,322,771 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 3rd | 0
5
10
15
20
25
30
35
40 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$0
\$8,976,322
\$1,346,448 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 5th Renourishment E&D+S&A 5th Renourishment E&D+S&A 5th Renourishment E&D+S&A 6th Renourishment E&D+S&A 6th Renourishment E&D+S&A 7th Renourishment E&D+S&A 7th Renourishment E&D+S&A 7th Renourishment E&D+S&A 8th | 0
5
10
15
20
25
30
35
40 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515
\$3,089,152 | \$1,065,828
\$8,171,351
\$1,634,270 | \$1,065,828
\$8,171,351
\$1,634,270 | \$1,065,828
\$8,171,351
\$1,634,270 | \$1,065,828
\$8,171,351
\$1,634,270 | \$1,055,828
\$8,171,351
\$1,634,270 | \$1,346,448
\$10,322,771
\$2,064,554 | \$1,346,448
\$10,322,771
\$2,064,554 | \$1,346,448
\$10,322,771
\$2,064,554 | \$0
\$8,976,322
\$1,346,448
\$10,322,771
\$2,064,554 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 5th Renourishment E&D+S&A 7th Renourishment E&D+S&A 8th | 0
5
10
15
20
25
30
35
40 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515
\$3,089,152
\$33,980,667 | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621 | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621 | \$1,634,270
\$9,805,621 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$0
\$8,976,322
\$1,346,448
\$10,322,771 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 7th Renourishment E&D+S&A 8th Renourishment E&D+S&A 9th Renourishment E&D+S&A 8th Renourishment E&D+S&A 9th Renourishment E&D+S&A 9th Renourishment E&D+S&A 1 Total Construction Cost | 0
5
10
15
20
25
30
35
40 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515
\$3,089,152
\$33,980,667 | \$1,634,270
\$1,634,270
\$9,805,621
Summary-Invest | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621
ment and Annua | \$1,654,270
\$1,634,270
\$9,805,621 | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621 | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621
at Indicated Yea | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$0
\$8,976,322
\$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 8rd 9rd Renourishment E&D+S&A 9rd Renourishment E&D+S&A 1rd Construction Cost | 0
5
10
15
20
25
30
35
40 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515
\$3,089,152
\$33,980,667 | \$1,665,828
\$8,171,351
\$1,634,270
\$9,805,621
Summary-Invest | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621 | \$1,634,270
\$9,805,621
Costs | \$1,055,828
\$8,171,351
\$1,634,270
\$9,805,621 | \$1,055,828
\$8,171,351
\$1,634,270
\$9,805,621 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$0
\$8,976,322
\$1,346,448
\$10,322,771
\$2,064,554 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 5th Renourishment E&D+S&A 5th Renourishment E&D+S&A 6th Renourishment E&D+S&A 7th Renourishment
E&D+S&A 5th Renourishment E&D+S&A 5th Renourishment E&D+S&A 5th Renourishment E&D+S&A 7th 8th | 0
5
10
15
20
25
30
35
40 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515
\$3,089,152
\$33,980,667 | \$1,634,270
\$1,634,270
\$9,805,621
Summary-Invest | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621
ment and Annua | \$1,634,270
\$9,805,621
15 | \$1,055,828
\$8,171,351
\$1,634,270
\$9,805,621
Renourishment. | \$1,055,828
\$8,171,351
\$1,634,270
\$9,805,621
at Indicated Yea
25 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$8,976,322
\$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 5th Renourishment E&D+S&A 8th Renourishment E&D+S&A 8th Renourishment E&D+S&A 8th Renourishment E&D+S&A 8th Renourishment E&D+S&A 9th Renourishment E&D+S&A | 0
5
10
15
20
25
30
35
40 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515
\$3,089,152
\$3,980,667 | \$1,634,270
\$1,634,270
\$9,805,621
Summary-Invest
\$9,805,621 | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621
ment and Annua
10
\$9,805,621 | \$1,634,270
\$9,805,621
15
\$9,805,621 | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621
Renourishment:
 | \$1,055,828
\$8,171,351
\$1,634,270
\$9,805,621
at Indicated Yea
25,805,621 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325 | \$0
\$8,976,322
\$1,346,448
\$10,322,771
\$10,322,771
\$2,064,554
\$12,387,325 | | Hard Bottom Mitigation (ac) Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&A 1st Renourishment E&D+S&A 2nd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 3rd Renourishment E&D+S&A 4th Renourishment E&D+S&A 4th Renourishment E&D+S&A 5th Renourishment E&D+S&A 5th Renourishment E&D+S&A 5th Renourishment E&D+S&A 7th Renourishment E&D+S&A 3th Renourishment E&D+S&A 5th 5 | 0
5
10
15
20
25
30
35
40 | 15% ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | Costs 1 1 1 1 1 1 1 1 1 1 1 1 | \$4,029,328
\$30,891,515
\$3,089,152
\$33,980,667
\$33,980,667
\$178,208 | \$1,634,270
\$1,634,270
\$9,805,621
\$9,805,621
\$9,805,621
\$9,805,621
\$0 | \$1,065,828
\$8,171,351
\$1,634,270
\$9,805,621
ment and Annua
10
\$9,805,621
\$0 | \$1,634,270 \$1,634,270 \$9,805,621 Costs 15 \$9,805,621 | \$1,055,828
\$8,171,351
\$1,634,270
\$9,805,621
Renourishment.
20
\$9,805,621
\$9,805,621 | \$1,055,828
\$8,171,351
\$1,634,270
\$9,805,621
at indicated Yea
25
\$9,805,621
\$0,805,621 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325
\$12,387,325
\$0
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325
\$12,387,325
\$12,387,325 | \$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325
\$40
\$12,387,325
\$0 | \$0
\$8,976,322
\$1,346,448
\$10,322,771
\$2,064,554
\$12,387,325
\$12,387,325
\$12,387,325 | - A-84. Based upon economic considerations, an ECL extension of 100 feet, the preliminary NED plan, was found to provide the optimum difference between annualized project costs and primary benefits. The NED plan was calculated using 1970 conditions, but under present conditions there is already sufficient beach width in some areas to maintain the preliminary NED plan width through the next expected nourishment interval. The only two areas within the Federal project which would require renourishment are from R-37 to R-42 and R-52 to R53 (Plates 1-7). Table A-17 shows the proposed beach extension, including advance nourishment, from the 1998 MHW. The preliminary NED design width is a 100 foot ECL/baseline extension (Appendix C). - A-85. <u>Design Fill Volume</u>. Based on guidance provided by the National Research Council's report on beach nourishment (National Research Council, 1995), design volumes presented here are based on nourishment of the entire active profile. The design volumes include 77,220 cy to restore and translate the profile. The design volume also takes into account the amount of material that is expected to be lost from 1998 to 2002 which is 39,900 cy. The design volumes for each profile are shown in Table A-17. - A-86. Advance Nourishment. The advance nourishment needed to maintain the design width is based upon the volumetric erosion rates from 1983 to 1998 (Figure A-3a). The volumetric erosion rates used to determined the amount of advance nourishment utilize only the erosive profile lines, because profile accretion is not an adverse effect on maintaining the design width. The profile erosion rates are smoothed, using a 3 point running average, so that advance fill can be placed more uniformly to prevent adverse diffusion and excessive hardbottom coverage. For the two fill areas, the background erosion rate is 13,200 cv/yr. - A-87. The advance nourishment also takes into account the amount of fill needed to maintain the design width through the 10-year renourishment interval as a result of diffusive end losses. Project diffusion is based upon the design's planform response to the wave climate (Campbell et al., 1992). The portion of the advance nourishment that is for project diffusion is 106,500 cy. Due to the compatibility of the borrow material to the existing beach material, no overfill is necessary. The total advance nourishment needed is 239,000 cy. (Table A-17). - A-88. <u>Fill Volume Behind ECL</u>. For the Federal project, only fill in Lauderdale-by-the-Sea will be placed behind the ECL. The total amount of fill behind the ECL is 9,100 cy (Table A-17). - A-89. <u>Hardbottom Coverage</u>. The hardbottom coverage is based upon the DOC for each beach profile line, the expected profile response, and the hardbottom location mapped in 1999 by Table A-17 Pompano Beach/Lauderdale-by-the-Sea Beach Extensions, Fill Volumes, and Hardbottom Coverage To Implement Preliminary NED Plan in 2002 | Monument | Effective
Distance
(ft) | MHW
Extension
(including
Adv. Fill) (ft) | Design
Volume
(CY) | Advance
Fill (CY) | Fill Behind
ECL (CY) | Hardbottom
Coverage
(acres) | |----------|-------------------------------|---|--------------------------|----------------------|-------------------------|-----------------------------------| | R-36 | 1,016 | 0.0 | 0 | 0 | 0 | 0.0 | | R-37 | 915 | 40.9 | 4,108 | 33,273 | 0 | 0.9 | | R-38 | 948 | 70.1 | 18,044 | 39,913 | 0 | 1.7 | | R-39 | 1,005 | 69.9 | 19,587 | 39,673 | 0 | 0.0 | | R-40 | 971 | 59.6 | 18,597 | 33,904 | 0 | 1.7 | | R-41 | 942 | 40.4 | 1,062 | 31,027 | 0 | 0.0 | | T-42 | 1,015 | 38.0 | 6,957 | 23,446 | 0 | 0.4 | | R-43 | 930 | 0.0 | 0 | 0 | 0 | 0.0 | | R-44 | 1,001 | 0.0 | 0 | 0 | 0 | 0.0 | | R-45 | 1,044 | 0.0 | 0 | 0 | 0 | 0.0 | | CR-46 | 789 | 0.0 | 0 | 0 | 0 | 0.0 | | R-47 | 972 | 0.0 | 0 | 0 | 0 | 0.0 | | R-48 | 1,205 | 0.0 | 0 | 0 | 0 | 0.0 | | R-49 | 1,129 | 0.0 | 0 | 0 | 0 | 0.0 | | R-50 | 1,000 | 0.0 | 0 | 0 | 0 | 0.0 | | R-51 | 973 | 0.0 | 0 | 0 | 0 | 0.0 | | T-52 | 967 | 31.9 | 24,340 | 9,094 | 5,520 | 1.1 | | R-53 | 978 | 60.0 | 24,441 | 28,621 | 3,605 | 0.5 | | Total | 17,800 | | 117,137 | 238,951 | 9,125 | 6.4 | Broward County. The total coverage for Pompano Beach/Lauderdale-by-the-Sea is 6.4 acres (Table A-17). - A-90. <u>Project Costs</u>. Costs were determined to implement the preliminary NED plan width of a 100 foot ECL extension under present conditions. The total costs to build and maintain this preliminary NED plan for 18 years, the remainder of the 50 year project life, are adjusted to present value then amortized over 18 years. The costs to maintain the project include one renourishment 10 years after construction. The interest rate used is 6.125%. The annualized cost for this modification to the reevaluated Federal project is \$967,000 (Table A-18). - A-91. Conservative price levels are used for the dredging of material. The mobilization/demobilization cost is \$1,000,000 and the unit cost of sand is \$8.50/CY. The dredging costs are based on the current market, account for dredging during the winter season, and filtering of dredged material. There are adequate sediment reserves (Appendix E) to assume constant unit price levels. - A-92. A contingency of 15% is included for all cost estimates. Costs to perform geotechnical investigations; secure easements; perform environmental monitoring; and engineering, design, construction supervision, and administration are shown in Table A-18. Sand production is estimated at 300,000 cy/month. # MODIFICATION TO THE FEDERAL PROJECT (FT. LAUDERDALE) - A-93. A recommended plan is presented here as a modification to the Federal project. Ft. Lauderdale has never been nourished and it is recommended that it be made a part of the Federal project. A detailed description of this recommendation is presented below and shown in Plates 7–14. The design and costs for the optimization of Ft. Lauderdale modification are presented. - A-94. <u>Project Length</u>. Approximately 4.0 miles of Ft. Lauderdale's 5.9 mile shoreline are erosional and initially considered for nourishment (Table A-6). Areas south of R-74 are mildly accretional. The north limit of the
proposed beach fill is located at FDEP monument R-53. The southern limit of the renourishment area is defined as R-74. - A-95. <u>Taper Section</u>. The south end of the proposed fill will require a 4,000 foot taper section beginning at R-74. The north end of this modification to the Federal Project will transition into the existing Federal Project at Lauderdale-by-the-Sea (R-53). The taper section was optimized using the guidance described in CETN-II-6 (USACE, 1982). The optimization is based on the transition length to the construction template, annual cost of renourishment, and annualized cost of the transition. Renourishment intervals of 10 and 11 years were used and the advance nourishment quantities used are described in a following section. Increments of 1000 feet were used. Table A-19 shows the annualized costs for various taper lengths. The 4,000 foot taper is optimal. **TABLE A-18** Estimate of Contract and Construction Costs Pompano Beach to Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) Renourishment Interval: 10 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment
2002 | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|--------------|----------------------------|--------------------------------------| | Mobilization
Reach 2 Beach Fill (cy) | 0 | \$1,000,000
\$8.50 | 1
356,088 | \$1,000,000
\$3,026,746 | \$1,000,000 | | | 10 | \$8.50 | 212,456 | | \$1,805,873 | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,331 | \$5,331 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.4 | \$1,919,653 | | | Subtotal | | | | \$5,951,730 | \$2,811,205 | | Contingency | | 15% | | \$892,760 | \$421,681 | | Subtotal Contract Cost | | | | \$6,844,490 | \$3,232,885 | | Geotechnical Investigations | | 107,203 | ~ | \$107,203 | \$107,203 | | Secure Easements | | 125,000 | - | \$125,000 | | | Environmental Monitoring | | 155,207 | - | \$155,207 | \$155,207 | | E&D+S&A | | 757,193 | ÷= | \$757,193 | \$757,193 | | Total Construction Cost | | | | \$7,989,093 | \$4,252,488 | | | Summary-Inves | Summary-Investment and Annual Costs | al Costs | | | | Item | | | | Renourishment | Renourishment at Indicated Year | | | | | | 2002 | 2012 | | Construction Cost | | | | \$7,989,093 | \$4,252,488 | | Interest During Construction | | | | \$39,873 | \$0 | | Total Investment Cost | | | | \$8,028,965 | \$4,252,488 | | Present Worth of Each Construction | | | | \$8,028,965 | \$2,346,746 | | Total Present Worth | | | | \$10,375,71 | 75,711 | | Average Annual Cost | \$967,279 | |---------------------|-----------| | Interest Rate | 6.125% | **TABLE A-19** # MODIFICATION TO THE FEDERAL PROJECT OPTIMIZATION OF TAPER LENGTH | Taper Length | Annualized Costs | Annualized Costs | |--------------|------------------|------------------| | (feet) | 10 Year | 11 Year | | 2,000 | \$767,000 | \$750,000 | | 3,000 | \$645,000 | \$624,000 | | 4,000 | \$624,000 | \$598,000 | | 5,000 | \$643,000 | \$612,000 | | 6,000 | \$682,000 | \$647,000 | | 7,000 | \$733,000 | \$693,000 | Note: Least cost alternative shown in bold. A-96. A non-federal preferred option of a 1,000 foot taper will be exercised when implementing the project. A 4,000 foot taper will cover an acre of additional hard bottom, which results in increased mitigation costs. The difference in sand volume between the 1,000 foot taper and 4,000 foot taper has been included in the advance nourishment. Using the 1000 foot taper while placing the 4,000 foot taper volume within the project limits will minimize hardbottom impacts while maintaining project integrity. A-97. <u>Project Baseline</u>. Since an ECL has not been established, the 1998 MHW (+1.9 feet NGVD) will be used as the project baseline. A-98. <u>Berm Elevations</u>. The authorized berm elevation for this project is +9.0 feet NGVD, which is consistent with the natural berm elevation. A-99. <u>Beach Widths</u>. While the beach width is optimized (preliminary NED plan) in Appendix C for this modification to the Federal project, design fill volumes, advance nourishment, hard bottom coverage, and project costs are needed for a variety of design widths. The beach widths used are in terms of baseline extensions and are from 1 foot to 50 feet in 25 foot increments. The preliminary NED plan for this modification was found to be a 25 foot extension of the baseline (Appendix C). A-100. <u>Design Fill Volume</u>. Based on guidance provided by the National Research Council's report on beach nourishment (National Research Council, 1995), design volumes presented here are based on nourishment of the entire active profile. The design volumes are calculated using profile translation. Included in the design volume is 75,500 cy to account for 1998-2002 expected erosion. The design volumes for the above beach widths are shown in Table A-20. # TABLE A-20 MODIFICATION TO THE FEDERAL PROJECT FILL VOLUMES AND HARD BOTTOM COVERAGE | ECL/ | South | Nourishment | Design | Advance | Fill | Hardbottom | Annualized | |-----------|---------|-------------|-----------|---------|----------|------------|-------------| | Baseline | Project | Interval | Fill (cy) | Fill | Behind | Coverage | Cost | | Extension | Limit | (yrs) | - | (cy) | Baseline | (acres) | | | (ft) | | - | | - | (cy) | | | | 1 | R-74 | 12 | 120,700 | 383,300 | 189,400 | 4.0 | \$1,016,000 | | 25 | R-74 | 11 | 556,400 | 364,400 | 189,400 | 6.5 | \$1,574,000 | | 50 | R-74 | 10 | 1,010,200 | 345,500 | 189,400 | 10.4 | \$2,202,000 | 25 | R-79 | 12 | 670,600 | 422,800 | 237,500 | 14.4 | \$2,037,000 | | 25 | R-84 | 12 | 768,700 | 457,300 | 278,700 | 15.3 | \$2,231,000 | - A-101. Advance Nourishment. The advance nourishment needed to maintain the design width is based upon volumetric erosion rates from 1993 to 1998 (Figure A-3b). The volumetric erosion rates used to determine the amount of advance nourishment utilize only the erosive profile lines because profile accretion is not an adverse effect on maintaining the design width. The profile erosion rates are smoothed, using a 3 point running average, so that advance fill can be placed more uniformly to prevent adverse diffusion and excessive hardbottom coverage. The advanced nourishment rate is 18,900 cy/yr. The advance nourishment necessary for the project also takes into account the diffusive end losses. The diffusion for the R53-R74 project (127,100 cy) includes the volume for a 4,000 foot taper. Project diffusion is based upon the design's planform response to the wave climate (Campbell et al., 1992). - A-102. Cost tables verifying optimal intervals are shown in Sub-Appendix A-3. Based upon the different sand characteristics between the existing beach and the borrow material, addressed in a previous section of this appendix, the overfill needed for this modification to the Federal project is 30,000 cy (1.4 cy/ft) for the R53 to R74 project. - A-103. <u>Fill Volume Behind Baseline</u>. The total amount of fill behind the baseline is 189,400 cy (Table A-20) for the R53-R74 project. - A-104. <u>Hardbottom Coverage</u>. The hardbottom coverage is based upon the DOC for each beach profile line and the hardbottom location mapped in 1999 by Broward County. The total coverage for Ft. Lauderdale is 6.5 acres (Table A-20) for the 25 foot wide, 11 year interval, project. - A-105. <u>Project Costs</u>. Conservative price levels are used for the dredging of material. Since this modification is being evaluated independently of the Pompano/Lauderdale-by-the-Sea project, the mobilization/demobilization cost is \$1,000,000. Since Ft. Lauderdale is further away from the borrow areas, the hopper dredge will have longer distances to travel. Consequently, the unit cost of sand is \$9.00/CY. The dredging costs are based on the current market, account for dredging during the winter season, and filtering of dredged material. There are adequate sediment reserves (Appendix E) to assume constant unit price levels. A contingency of 15% is added to any contract cost. A-106. Costs for project engineering and design, construction administration, maintenance, and project monitoring are estimated as a percentage of contract costs. For initial nourishment the E&D and S&A percentage is 10% and increases to 20% for the subsequent renourishment (Table A-21). A contingency of 15% is included for all cost estimates. Sand production is estimated at 300,000 cy/month. Detailed cost estimates for each design width are shown in Sub-Appendix A-3, but are summarized in Table A-20. Appendix C determines that the 25 foot width project is the optimal project. ### BEACH LENGTHS A-107. As discussed previously, the existing beach is erosional from R53 through R-74 in Ft. Lauderdale; therefore, if sufficient benefits exist (Appendix C), this is the minimum length of beach that should be constructed. To determine the optimal length (preliminary NED plan) additional lengths were considered with 5,000 foot increments. The maximum length considered extends to the north jetty at Port Everglades. The design parameters and costs are summarized in Table A-20. Hardbottom coverages for each length of project are also shown. Optimization of the intervals is shown in Appendix A-4. Optimization of the project length, discussed in Appendix C, indicates that the R-53 to R-74 project is the preliminary NED length. Hardbottom impacts are also minimized. ## COMBINED REEVALUATED AND MODIFIED FEDERAL PROJECT A-108. The total cost of the reevaluated Pompano Beach/Lauderdale-by-the-Sea project over a 50-year life and the Ft. Lauderdale project over a 18-year life is shown in Table A-22. This analysis combines the project costs at the individual optimal nourishment intervals. The annual cost of the preliminary NED plan is \$4,146,000. ## IMPLEMENTATION OF THE COMBINED REEVALUATED FEDERAL PROJECT A-109. While the previous section presented the costs for the
project over a 50-year life, implementation of the project will occur over the remaining 18 years of the authorized life. There are opportunities for cost saving through shared mobilization efforts and identifying a combined nourishment interval. It should be noted, that due to the change in nourishment interval, the hardbottom coverage reduces to 6.4 and 6.4 acres, for Pompano Beach/Lauderdale-by-the-Sea and Ft. Lauderdale, respectively. Based upon the annualized costs of the recommended modified, reevaluated Federal project, the optimum renourishment interval is 10 years, with an annualized cost of \$2,355,000 (Table A-23). Detailed cost estimates for various nourishment intervals are shown in Sub-Appendix A-5. The renourishment interval was determined using the fill volume and costs estimates, to implement the preliminary NED plans for both Pompano Beach/Lauderdale-by-the-Sea (100 foot extension of the ECL/baseline) and Ft. Lauderdale (25 foot baseline extension). These volume calculations and cost estimates were addressed in previous sections of this appendix. The annualized cost for each renourishment interval is shown in Table A-24, and detailed cost tables are shown in Sub-Appendix A-5. # Estimate of Contract and Construction Costs Pompano Beach/Lauderdale-by-the-Sea and Ft. Lauderdale 100'/25' Added Shoreline Width (ft) 5/11 Year Renourishment Interval Project Life: 50 yrs | ltem
Yournshment | Project Year | Unit Cost | Quantity | 1970 | :975 | 1980 | 1985 | 1989 | 1995 | at indicated Yea
2000 | 2002 | 2005 | 2010 | 2013 | 2015 | |---|--------------|-----------------------|---|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------|---------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------|--------------------------| | Mobilization/Demobilization | · | \$1,000,000 | 1 | \$1,000,000 | | | | | | | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6.50 | 3,411,810
84.7 | \$22,176,765
\$25,422 | | | | | | | | | | | | | Hard Bottom Miligation (ac) | | 2300,000 | 12.2 | \$3,660,000 | | | | | | | | | | | | | i Renourshment | 5 | | | | | | | | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6.50 | f
935,400 | | \$1,000,000
\$6,080,100 | | | | | | | | | | | | Beach Tilling (ac) | | \$300 | 64.7 | | 525,422 | | | | | | | | | | | | Hard Bottom Mitigation (ac)
nd Renounshment | 10 | | | | \$0 | | | | | | | | | | | | Mobilization/Demobilization | 10 | \$1,000,000 | 1 | | | \$1,000,000 | | | | | | | | | | | Beach Fill | | \$6.50 | 935,400 | | | \$6,080,100 | | | | | | | | | | | Beach Tilling (ac)
Hard Bottom Mrsgation (ac) | | \$300 | 84 7 | | | \$25,422
\$0 | | | | | | | | | | | d Renourshment | 15 | | | | | •- | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000
\$6,50 | 1
935,400 | | | | \$1,000,000
\$6,030,100 | | | | | | | | | | Beach Tilling (sc) | | \$300 | 84.7 | | | | \$25,422 | | | | | | | | | | Hard Bottom Misgation (ac)
in Renourishment | 20 | | | | | | \$0 | | | | | | | | | | Mobilization/Demobilization | 20 | \$1,000,000 | 1 | | | | | \$1,000 000 | | | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6.50 | 935,400 | | | | | \$6.080.100 | | | | | | | | | Hard Bottom Mitigation (ac) | | \$300 | 84 7 | | | | | \$25,422
\$0 | | | | | | | | | h Renounshment | 25 | | | İ | | | | | | | | | | | | | Mobilization/Demobilization
Seach Fill | | \$1,000,000
\$6.50 | 1
935,400 | | | | | | \$1,000,000 | | | | | | | | Seech Tilking (ac) | | \$300 | 84 7 | | | | | | \$6,080,100
\$25,422 | | | | | | | | Hard Boltom Mitigation (ac) | | | | 1 | | | | | \$0 | | | | | | | | h Renounshment
Mobilization/Damob lization | 30 | \$1,000,000 | , | ! | | | | | | \$1,000,000 | | | | | | | Seach Fill | | \$8.50 | 935,400 | | | | | | | 57,950,900 | | | | | | | Beach Tilling (ac)
Herd Bottom Mitigation (ac) | | \$300 | 84.7 | | | | | | | \$25,422 | | | | | | | Ih Rengunshment | 35 | | | : | | | | | | 50 | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | | \$1,000,000 | | | | | Seach Fill
Seach Tilling (ac) | | \$300
\$300 | 935,400
84.7 | | | | | | | | | \$7.950,900
\$25,422 | | | | | Hard Bottom Mitigation (ac) | | **** | 4 | | | | | | | | | \$0 | | | | | lih Renoutlahment
Mobilization/Damobilization | 40 | #4 oon oon | | | | | | | | | | | | | | | Seach Fill | | \$1,000,000
\$8.50 | 935,400 | | | | | | | | | | \$1,000,000
\$7,950,900 | | | | Seach Tilling (ac) | | \$300 | 84,7 | | | | | | | | | | \$25.422 | | | | Hard Bottom Mitigation (ac)
h Resourchment | 45 | | | | | | | | | | | | . 50 | | | | Mobilization/Demobilization | | \$1,000,000 | 1. | | | | | | | | | | | | \$1,000,000 | | Beach Fill
Beach Tilkng (ac) | | \$8.50
\$300 | 935,400
84 7 | | | | | | | | | | | | \$7,950,900
\$25,422 | | Haud Bottem Mitigation (ac) | | 3300 | 041 | | | | | | | | | | | | \$25,422 | | ddition of FI Lauderdale | | | | | | | | | | | | | | | • | | Mobilization/Damobilization | 32. | \$1,000,000 | | İ | | | | | | | \$1,000,000 | | | | | | Besch Fill | | \$9.00 | 920,780 | | | | | | | | \$8,287,023 | | | | | | Beach Tilling (ac)
Hard Bottom Mitigation (ac) | | \$300,000 | 12.1
8.5 | | | | | | | | \$3,635 | | | | | | Innourishment Ft Lauderdale | 43 | 4004,000 | • | | | | | | | | \$1,953,293 | | | | | | Mobilization/Damob-lization
Beach Fill | | \$1,000,000
\$9.00 | 1 | | | | | | | | | | | \$1,000,000 | | | Beach Tilking (ac) | | \$300 | 286,850
12 1 | | | | | | | | | | | \$2,589.645
\$3,635 | | | Hard Bottom Mitigation (ac) | | | | | | | | | | | | | | \$0 | | | Subtotal | | | | \$26.662,187 | \$7.105.622 | \$7,105,522 | \$7,105,522 | \$7,105,522 | \$7,105,522 | \$5,976,322 | \$11,243,951 | \$8,976.322 | \$8,976,322 | \$3,603,282 | \$6,976,322 | | Contingency | | 15% | | \$4,029,328 | \$1.065.628 | \$1,065,828 | \$1,085,828 | \$1,065,828 | \$1,085,828 | \$1,346,448 | \$1,686.593 | 51,346 448 | \$1,346,448 | \$540,492 | \$1,348.445 | | Subtotal Contract Cont | | | | \$30.691.515 | \$8.171.351 | \$8,171,351 | \$8,171,351 | \$8,171,351 | \$8.171,351 | \$10.322.771 | \$12,930,544 | \$10,322,771 | \$10,322.771 | \$4.143.774 | \$10,322,771 | | | Perce | entage of Contract | Conta | | | | | | | | | | | | | | fourishment
E&D+S&A | 0 | 10% | 1 | \$3,089,152 | | | | | | | | | | | | | st Renounshment | 5 | 1076 | | \$3,U89,132 | | | | | | | | | | | | | E&D+S&A | | 20% | 1 | | \$1.834.270 | | | | | | | | | | | | nd Renourishment
E&D+S&A | 10 | 20% | | | | \$1,634,270 | | | | | | | | | | | rd Renounshment | 15 | | | | | 41,004,210 | | | | | | | | | | | EAD+S&A
th Renowishment | 20 | 20% | 1 | | | | \$1,634,270 | | | | | | | | | | E&D+S&A | | 20% | 1 | | | | | \$1,634,270 | | | | | | | | | A Renourishment | 25 | | | | | | | | 4 | | | | | | | | E&D+S&A
5 Renounshment | 30 | 20% | 1 | | | | | | \$1.634.270 | | | | | | | | E&D+S&A | | 20% | 1 | | | | | | | \$2,064,554 | | | | | | | Renounshment
E6D+S&A | 35 | now. | 1 | | | | | | | | | to or : | | | | | h Regounshment | 40 | 20% | 1 | | | | | | | | | \$2,084.554 | | | | | E&D+5&A | | 20% | 1 | | | | | | | | | | \$2,064,554 | | | | h Renounshment
E&D+S&A | 45 | 20% | 1 | | | | | | | | | | | | 2.064.554 | | | | FA.30 | , | | | | | | | | | | | | 2.004.054 | | tokon of Ft Lauderdale
E&D+S&A | 32 | | | | | | | | | | | | | | | | ESD+S&A
II Renourishmeni | 43 | 10% | 1 | | | | | | | | \$1,293,064 | | | | | | E5D+S&A | - | 20% | 1 | | | | | | | | | | | \$828,755 | | | Total Construction Cost | | | | \$33,880,567 | \$9,805,521 | 59.805.621 | \$9,805,621 | \$9,305,621 | \$9,805,621 | E12307325 | \$41.222.500 | \$13.3p7.20* | tro get age | \$4 p72 see | £12.597.00 | | roam commutation cost | | | | 335,830,807 | 49,000,021 | 33,003,621 | \$2,0u0,02) | 48,000,621 | \$8,0V\$,821 | a12,387,325 | \$14,223,596 | \$12.387,325 | a1Z,347,325 | \$4,972,528 | \$12,387,32 | | | | | | | 5 | Summary-Investr | ment and Annual | Costs | | | | | | | | | Item | | | | · · · · | | | | | Renourishment | at Indicated Yes | , | | | | | | onstruction Cost | | | | 1973
\$33,980,667 | 1975
\$9,805,821 | 1980
\$9.835.621 | 1855
\$9.805,621 | 1990 | 1995 | 2000
\$12,387,325 | 2002 | 2005 | 2013 | 2013 | 2015 | | erre well-det special | | | | \$33,980,667
\$178,208 | \$9,805,621
\$0 | \$9.805.621
\$0 | \$9.805,621
\$0 | \$9,805,621
\$0 | \$9,805,621
\$0 | \$12,387,325
\$0 | \$14,223,698
\$71,696 | \$12,367,325
\$0 | \$12,387,325
\$0 | 54,972,528
50 | \$12,387,32:
\$0 | | terest Buring Construction | | | | 1 | tul Investment Cost | | | | \$34,158,874 | \$9,805,821 | \$9.505.621 | \$6,805,621 | \$9,805,621 | 59,805,621 | | \$14,295,294 | \$12 387,325 | 512,387,325 | 54,972,528 | | | otal Investment Cost resent Worth of Each Construction otal Present Worth | | | | \$34,158,874
\$34,158,874 | \$9,805,821
\$7,284,279 | \$9.605 621
\$5,411 256 | \$9,805,621
\$4,019,847 | \$9,805,621
\$2,986,215 | \$2.218.362 | \$12,387,325
\$2,081,836
26,542 | \$14,295,294
\$2 133,175 | \$12 387,325
\$1,546,528 | \$12,387,325
\$1,148,866 | \$4,972,528
\$386,548 | \$12,337,32
\$653 455 | Average Annual Coat \$4,145,208 Interest Rate 6,126% # Estimate of Contract and Construction Costs Ft Lauderdale # 25' Added Shoreline Width (ft) to R-74 Renourishment Interval: 11 yrs **Project Life: 18 years** | Item | Project Year | Unit Cost | Quantity | Renourishment a | t Indicated Year
2013 | |------------------------------------|----------------|-----------------|----------
-----------------|--------------------------| | Mobilization | | \$1,000,000 | 1 | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 920,780 | \$8,287,023 | | | | 11 | \$9.00 | 288,850 | | \$2,599,646 | | Beach Tilling (ac) | | \$300 | 12.1 | \$3,635 | \$3,635 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.5 | \$1,953,293 | | | Subtotal | | | | \$11,243,951 | \$3,603,282 | | Contingency | | 15% | | \$1,686,593 | \$540,492 | | Subtotal Contract Cost | | | | \$12,930,544 | \$4,143,774 | | Nourishment | | | | | | | E&D+S&A | | 10% | 1 | \$1,293,054 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | 1 | | \$828,755 | | Total Construction Cost | | | | \$14,223,598 | \$4,972,528 | | | Summary-Invest | ment and Annual | Costs | | | | Item | | | | Renourishment a | t Indicated Year | | | | | | 2002 | 2013 | | Construction Cost | | | | \$14,223,598 | \$4,972,528 | | Interest During Construction | | | | \$71,696 | \$0 | | Total Investment Cost | | | | \$14,295,294 | \$4,972,528 | | Present Worth of Each Construction | | | | \$14,295,294 | \$2,585,726 | | Total Present Worth | | | | \$16,88 | 31,020 | | Average Annual Cost | \$1,573,739 | |---------------------|-------------| | Interest Rate | 6.125% | P:\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\[Table-A21-optimized interval-FLL-rev.xls]11 yrs (2) 2/18/2002 1:16 PM # Estimate of Contract and Construction Costs Segment II # 100'/25' Added Shoreline Width (ft) Renourishment Interval: 10 yrs **Project Life: 18 yrs** | | | | | Donouriohmont | at Indicated Year | |------------------------------------|---------------|-----------------|----------|------------------|---------------------------| | Item | Project Year | Unit Cost | Quantity | 2002 | 2012 | | Mobilization | | \$1,100,000 | 1 | \$1,100,000 | \$1,100,000 | | Reach 2 Beach Fill (cy) | 0 | \$8.50 | 356,088 | \$3,026,746 | , , , | | , ., | 10 | \$8.50 | 212,456 | | \$1,805,873 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 901,893 | \$8,117,037 | | | | 10 | \$9.00 | 307,737 | | \$2,769,633 | | Beach Tilling (ac) | | \$300 | 29.9 | \$8,966 | \$8,966 | | Hard Bottom Mitigation (ac) | | \$300,000 | 12.8 | \$3,829,062 | | | Subtotal | | | | \$16,081,811 | \$5,684,472 | | Contingency | | 15% | | \$2,412,272 | \$852,671 | | Subtotal Contract Cost | | | | \$18,494,083 | \$6,537,143 | | | | 100.000 | | # 400.000 | 0.100.000 | | Geotechnical Investigations | | 190,000 | 1 | \$190,000 | \$190,000 | | Secure Easements | | 250,000 | 1 | \$250,000 | 4075 070 | | Environmental Monitoring | | 275,079 | 1 | \$275,079 | \$275,079 | | E&D+S&A | | 1,342,000 | 1 | \$1,342,000 | \$1,342,000 | | Total Construction Cost | | | | \$20,551,162 | \$8,344,222 | | | Summary-Inves | tment and Annua | al Costs | | | | | Cummary mires | | 000.0 | | | | Item | | | | Renourishment a | at Indicated Year
2012 | | Construction Cost | | | | \$20,551,162 | \$8,344,222 | | Interest During Construction | | | | \$104,105 | \$0 | | Total Investment Cost | | | | \$20,655,267 | \$8,344,222 | | Present Worth of Each Construction | | | | \$20,655,267 | \$4,604,779 | | Total Present Worth | | | | \$25,20 | 60,046 | | Average Annual Cost | \$2,354,877 | |---------------------|-------------| | Interest Rate | 6.125% | # TABLE A-24 RENOURISHMENT INTERVAL OPTIMIZATION FOR THE IMPLEMENTATION OF THE RE-EVALUATED FEDERAL PROJECT | Nourishment Interval (Years) | Project Costs | |------------------------------|---------------| | 9 | \$2,356,000 | | 10 | \$2,355,000 | | 11 | \$2,358,000 | | 12 | \$2,364,000 | | 13 | \$2,373,000 | | 14 | \$2,385,000 | | 15 | \$2,400,000 | Note: Least cost alternative shown in bold. A-110. The preliminary NED plan was reviewed with the State of Florida and Federal resource agencies to determine if the plan was permittable. After consultation with those agencies, it was determined that the preliminary NED plan was not permittable due to excessive equilibrium toe of fill impacts, but with some modifications to avoid impacts to nearshore hardbottoms and avoid potential impacts to hardbottoms adjacent to the borrow areas, the plan could be permittable. The modifications generally include the following: - a. A reduction in the advanced nourishment volume between R-36 and R-42. - b. A reduction in the advanced nourishment volume between R-51 and R-71. - c. A reduction in the Ft. Lauderdale design width from 25 feet to 20 feet. - d. A shortening of the project length from R-74 to R-71 (about 3000 feet). - e. Elimination of Borrow Area V and VII (Appendix E). - f. Modification of the other borrow areas, as needed, to increase the distance from the borrow area to specific hardbottom resources (Appendix E). A-111. The total beach fill in northern Pompano Beach (R-36 to R-42) was reduced to 198,000 cy. Based on 2001 beach profiles, approximately 26,000 cy is required to restore the 100 foot design section. The remaining 172,000 cy will provide 6 years of advanced nourishment accounting for background erosion, end losses and overfill. Approximately 3.0 acres of nearshore hardbottom will be impacted by the equilibrium toe of fill. The cost of implementing this 6 year nourishment interval for the remaining 18 years of project life is shown in Table A-25. The annual cost is \$1,094,000. This is the NED plan for Pompano Beach/Lauderdale-By-The-Sea. A-112. The Ft. Lauderdale segment (R-53 to R-71 with tapers to adjacent beaches) was reduced to 732,000 cy. This required a reduction of the design section from 25 feet to 20 feet (extension of the 1998 shoreline). Based on the 2001 beach profiles approximately 476,000 cy is required to establish the design section. The remaining 256,000 cy will provide 6 years of advanced nourishment for background erosion, end losses and overfill. Approximately 3.0 acres of Estimate of Contract and Construction Costs Pompano Beach/Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) 6 Year Renourishment Interval Project Life: 18 yrs | Item | Project | Unit Cost | Quantity | Renourist
2002 | nment at Indica
2008 | ted Year
2014 | |-----------------------------------|-----------|--------------------|------------|---------------------|-------------------------|---------------------| | Nourishment | Year
0 | | | 2002 | 2006 | 2014 | | Mobilization/Demobilization | U | \$1,000,000 | 1 | \$1,000,000 | | | | Beach Fill | | \$8.50 | 198,000 | \$1,683,000 | | | | | | * | • | | | | | Beach Tilling (ac) | | \$300 | 26.0 | \$7,800 | | | | Hard Bottom Mitigation (ac) | • | \$300,000 | 3.0 | \$900,000 | | | | 1st Renourishment | 6 | # 4 000 000 | | | # 4 000 000 | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | \$1,000,000 | | | Beach Fill | | \$8.50 | 171,000 | | \$1,453,500 | | | Beach Tilling (ac) | | \$300 | 22.0 | | \$6,600 | | | Hard Bottom Mitigation (ac) | | | 0.0 | | \$0 | | | 2nd Renourishment | 12 | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | \$1,000,000 | | Beach Fill | | \$8.50 | 171,000 | | | \$1,453,500 | | Beach Tilling (ac) | | \$300 | 22.0 | | | \$6,600 | | Hard Bottom Mitigation (ac) | | | 0.0 | | | \$0 | | Subtotal | | | | \$3,590,800 | \$2,460,100 | \$2,460,100 | | Contingency | | 15% | | \$538,620 | \$369,015 | \$369,015 | | Subtotal Contract Cost | | 1070 | | \$4,129,420 | \$2,829,115 | \$2,829,115 | | Subtotal Sollinate Soci | | | | ψ1,120,120 | Ψ2,020,110 | Ψ2,020,110 | | | Percer | tage of Contrac | t Costs | | | | | Nourishment | 0 | | | | | | | Geotechnical Investigations | | \$190,000 | 1 | \$190,000 | | | | Secure Easements | | \$250,000 | 1 | \$250,000 | | | | Environmental Monitoring | | \$275,079 | 1 | \$275,079 | | | | E&D+S&A | | \$1,342,000 | 1 | \$1,342,000 | | | | 1st Renourishment | 6 | | | | | | | Geotechnical Investigations | | \$190,000 | 1 | | \$190,000 | | | Environmental Monitoring | | \$275,079 | 1 | | \$275,079 | | | E&D+S&A | | \$1,342,000 | 1 | | \$1,342,000 | | | 2nd Renourishment | 12 | | | | | | | Geotechnical Investigations | | \$190,000 | 1 | | | \$190,000 | | Environmental Monitoring | | \$275,079 | 1 | | | \$275,079 | | E&D+S&A | | \$1,342,000 | 1 | | | \$1,342,000 | | Total Construction Cost | | | | \$6,186,499 | \$4,636,194 | \$4,636,194 | | | Summ | ary-Investment | and Annual | | | | | | | | | _ | | | | Item | | | | | nment at Indica | | | Construction Cost | | | | 2002
\$6,186,499 | 2008
\$4,636,194 | 2014
\$4,636,194 | | Interest During Construction | | | | \$31,577 | \$4,030,194
\$0 | \$4,636,194 | | interest During Construction | | | | φυτ,υττ | φυ | φυ | | Total Investment Cost | | | | \$6,218,076 | \$4,636,194 | \$4,636,194 | | Present Worth of Each Constructio | n | | | \$6,218,076 | \$3,245,304 | \$2,271,690 | | Total Present Worth | | | <u> </u> | | \$11,735,070 | | | Average Annual Cost | \$1,094,006 | |---------------------|-------------| | Interest Rate | 6.125% | nearshore hardbottom will be impacted by the equilibrium toe of fill. The cost of implementing the 6 year interval for the remaining 18 years of project life is shown in Table A-26. The annual cost is \$1,287,000. This is the NED plan for Ft. Lauderdale. The total cost of the reevaluated Pompano Beach/Lauderdale-by-the-Sea project over a 50-year life and the (20 foot) NED plan for the Ft. Lauderdale project over an 18-year life is shown in Table A-27. A-113. As the Pompano/LBTS reach and Ft. Lauderdale reach will be concurrently constructed, a combine cost estimate is shown in Table A28. The annual cost to implement the Segment II NED plan for the remainder of the authorized life (18 years) is \$2,228,000. # SUMMARY OF PROJECT COSTS A-114. A summary of the project costs for the development and implementation of the Segment II project is provided in Table A-29. # Estimate of Contract and Construction Costs Ft. Lauderdale 20' Added Shoreline Width (ft) 6 Year Renourishment Interval Project Life: 18 yrs | Item | Project | Unit Cost | Quantity | Renourish | ment at Indica |
ted Year | |------------------------------------|---------|-----------------|------------|-------------|------------------|-------------| | | Year | ——— | Quantity | 2002 | 2008 | 2014 | | Nourishment | 0 | | | - | | | | Mobilization/Demobilization | | \$100,000 | 1 | \$100,000 | | | | Beach Fill | | \$9.00 | 737,000 | \$6,633,000 | | | | Beach Tilling (ac) | | \$300 | 69.0 | \$20,700 | | | | Hard Bottom Mitigation (ac) | | \$300,000 | 3.0 | \$900,000 | | | | 1st Renourishment | 6 | | | | | | | Mobilization/Demobilization | | \$100,000 | 1 | | \$100,000 | | | Beach Fill | | \$9.00 | 257,000 | | \$2,313,000 | | | Beach Tilling (ac) | | \$300 | 24.0 | | \$7,200 | | | Hard Bottom Mitigation (ac) | | | 0.0 | | \$0 | | | 2nd Renourishment | 12 | | | | · | | | Mobilization/Demobilization | | \$100,000 | 1 | | | \$100,000 | | Beach Fill | | \$9.00 | 257,000 | | | \$2,313,000 | | Beach Tilling (ac) | | \$300 | 24.0 | | | \$7,200 | | Hard Bottom Mitigation (ac) | | • | 0.0 | | | \$0 | | Subtotal | | <u> </u> | | \$7,653,700 | \$2,420,200 | \$2,420,200 | | Contingency | | 15% | | \$1,148,055 | \$363,030 | \$363,030 | | Subtotal Contract Cost | | | | \$8,801,755 | \$2,783,230 | \$2,783,230 | | | Percent | tage of Contrac | ct Costs | | | | | Nourishment | 0 | J | | | | | | E&D+S&A | | 10% | | \$880,176 | | | | 1st Renourishment | 6 | | | , , , , , , | | | | E&D+S&A | | 20% | | | \$556,646 | | | 2nd Renourishment | 12 | | | | ¥===,± :• | | | E&D+S&A | | . 20% | | | | \$556,646 | | Total Construction Cost | | | | \$9,681,931 | \$3,339,876 | \$3,339,876 | | | Summa | ary-Investment | and Annual | Costs | · - · | | | | | · | | Renourish | ıment at Indica | ted Year | | Item | | | | 2002 | 2008 | 2014 | | Construction Cost | | | | \$9,681,931 | \$3,339,876 | \$3,339,876 | | Interest During Construction | | | | \$148,255 | \$0 | \$0 | | Total Investment Cost | | | | \$9,830,185 | \$3,339,876 | \$3,339,876 | | Present Worth of Each Construction | n | | | \$9,830,185 | \$2,337,890 | \$1,636,507 | | Total Present Worth | | | • | | \$13,804,582 | , | | Average Annual Cost | \$1,286,937 | |---------------------|-------------| | Interest Rate | 6.125% | # Estimate of Contract and Construction Costs Ротрало Beach/Lauderdale-by-the-Sea and Ft. Lauderdale 100' /20' Added Shoreline Width 6 Year Renourishment Interval Project Life: 18 yrs | Item | Project | Unit Cost | Quantity | | ment at Indica | ited Year | |-----------------------------------|---------|-----------------|------------|--------------|----------------|-------------| | | Year | | | 2002 | 2008 | 2014 | | Nourishment | 0 | | | | | | | Mobilization/Demobilization | | \$1,100,000 | 1 . | \$1,100,000 | | | | Beach Fill- Pompano/LBTS | | \$8.50 | 198,000 | \$1,683,000 | | | | Beach Fill- Ft. Lauderdale | | \$9.00 | 737,000 | \$6,633,000 | | | | Beach Tilling (ac) | | \$300 | 95.0 | \$28,500 | | | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.0 | \$1,800,000 | | | | 1st Renourishment | 6 | | | | | | | Mobilization/Demobilization | | \$1,100,000 | 1 | | \$1,100,000 | | | Beach Fill- Pompano/LBTS | | \$8.50 | 171,000 | | \$1,453,500 | | | Beach Fill- Ft. Lauderdale | | \$9.00 | 257,000 | | \$2,313,000 | | | Beach Tilling (ac) | | \$300 | 46.0 | | \$13,800 | | | Hard Bottom Mitigation (ac) | | | 0.0 | | \$0 | | | 2пd Renourishment | 12 | | | | • | | | Mobilization/Demobilization | | \$1,100,000 | 1 | | | \$1,100,000 | | Beach Fill- Pompano/LBTS | | \$8.50 | 171,000 | | | \$1,453,500 | | Beach Fill- Ft. Lauderdale | | \$9.00 | 257,000 | | | \$2,313,000 | | Beach Tilling (ac) | | \$300 | 46.0 | | | \$13,800 | | Hard Bottom Mitigation (ac) | | 4000 | 0.0 | | | \$0 | | | | | 0.0 | | | ΨΟ | | Subtotal | | | | \$11,244,500 | \$4,880,300 | \$4,880,300 | | Contingency | | 15% | | \$1,686,675 | \$732,045 | \$732,045 | | Subtotal Contract Cost | | | | \$12,931,175 | \$5,612,345 | \$5,612,345 | | | | | | | | | | | | tage of Contrac | t Costs | | | | | Nourishment | 0 | | | | | | | Geotechnical Investigations | | \$190,000 | 1 | \$190,000 | | | | Secure Easements | | \$250,000 | 1 | \$250,000 | | | | Environmental Monitoring | | \$275,079 | 1 | \$275,079 | | | | E&D+S&A | | \$1,342,000 | 1 | \$1,342,000 | | | | 1st Renourishment | 6 | | | ļ | | | | Geotechnical Investigations | | \$190,000 | 1 | | \$190,000 | | | Environmental Monitoring | | \$275,079 | 1 | | \$275,079 | | | E&D+S&A | | \$1,342,000 | 1 | | \$1,342,000 | | | 2nd Renourishment | 12 | | | | | | | Geotechnical Investigations | | \$190,000 | 1 | | | \$190,000 | | Environmental Monitoring | | \$275,079 | 1 | | | \$275,079 | | E&D+S&A | | \$1,342,000 | 1 | | | \$1,342,000 | | Total Construction Cost | | | | \$14,988,254 | \$7,419,424 | \$7,419,424 | | Total Constitution Cost | | | | ψ14,300,234 | Ψ1,415,424 | Ψ1,413,424 | | | Summ | ary-Investment | and Annual | Costs | | | | Item | | | | Renourish | ment at Indica | ted Year | | | | | | 2002 | 2008 | 2014 | | Construction Cost | | | | \$14,988,254 | \$7,419,424 | \$7,419,424 | | Interest During Construction | | | | \$76,503 | \$0 | \$0 | | Total Investment Cost | | | | \$15,064,757 | \$7,419,424 | \$7,419,424 | | Present Worth of Each Constructio | n | | | \$15,064,757 | \$5,193,546 | \$3,635,446 | | Total Present Worth | | | | 1 | \$23,893,749 | | | Average Annual Cost | \$2,227,503 | |---------------------|-------------| | Interest Rate | 6.125% | TABLE A-28 SUMMARY OF PROJECT COSTS | Project | Project Limits | Nourishment
Interval (yrs) | Annualized
Costs | Reference
Table(s) | |---|----------------|-------------------------------|---------------------|-----------------------| | Reevaluation of Federal Project | R-26 to R-53 | S | \$3,984,000 | A-15, A-16 | | Implementation of the Reevaluated Federal Project | R-36 to R-53 | 10 | \$967,000 | A-18 | | Modification to the Federal Project | R-53 to R-74 | - | \$1,574,000 | A-20, A-21 | | Combined Reevaluation and Modification of the Federal Project | R-26 to R-74 | 5/11 | \$4,146,000 | A-22 | | Implementation of the Combined Project | R-36 to R-74 | 10 | \$2,355,000 | A-23, A-24 | | Implementation of the NED Ft. Lauderdale Project | R-53 to R-71 | ø | \$1,287,000 | A-26 | | Implementation of the NED Combined Project | R-36 to R-71 | · O | \$2,228,000 | A-27 | TABLE A-29 # SUMMARY OF PROJECT COSTS | Project | Project Limits | Nourishment
Interval (yrs) | Annualized
Costs | Reference
Table(s) | |---|----------------|-------------------------------|---------------------|-----------------------| | Reevaluation of Federal Project | R26 to R53 | Ŋ | \$3,984,000 | A-15, A-16 | | Implementation of the Reevaluated Federal Project | R36 to R53 | 10 | \$967,000 | A-18 | | Modification to the Federal Project | R53 to R74 | 11 | \$1,574,000 | A-20, A-21 | | Combined Reevaluation and Modification of the Federal Project | R26 to R74 | 5/11 | \$4,146,000 | A-22 | | Implementation of the Combined Project | R36 to R74 | 10 | \$2,355,000 | A-23, A-24 | | Modification to the Federal Project (NED Ft.
Lauderdale Project) | R53 to R71 | ဟ | \$1,287,000 | A-26 | | Reevaluated and Modified Federal Project | R26 to R71 | 5/6 | \$4,155,000 | A-27 | | Implementation of the NED Combined Project | R36 to R71 | ဖ | \$2,228,000 | A-28 | ### REFERENCES Birkemeier, W.A., 1985. Field Data on Seaward Limit of Profile Change, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, p. 598. Borgman, L.E., Miller, M., Butler, H.L., and Reinhard, R.D., 1992. Empirical Simulation of Future Hurricane Storm Histories as a Tool in Engineering and Economic Analysis, Proceedings, Civil Engineering in the Oceans V, ASCE, 42-65. Brooks, R.M. and Brandon, W.A., 1995. Hindcast Wave Information for the U.S. Atlantic Coast: Update 1976-1993 with Hurricanes. WIS Report 33. U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS. Bruun, P., 1962. Sea Level Rise as a Cause of Beach Erosion, Journal of the Waterways and Harbors Division, ASCE, 88(WW1):117-30. Coastal Planning & Engineering, Inc., 1992. Hillsboro Inlet Management Plan, report to the Hillsboro Inlet Improvement and Maintenance District, July 1992. Dean, 1991. "Equilibrium Beach Profiles: Principles and Applications," Journal of Coastal Research. 7, 1. Godschalk and Associates, 1988. Lee County Coastal Study. Vol. 2, Technical Reports and Appendices. Gravens, M.B., 1992. User's Guide to the Shoreline Modeling System (SMS), Instruction Report CERC-92-1, U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS. Hallermeier, R.J., 1978. Uses for a Calculated Limit Depth to Beach Erosion, Proceedings of Sixteenth Conference on Coastal Engineering, ASCE, pp. 1493-1512. Larson M., and Kraus, N.C., 1989. SBEACH: Numerical Model for Simulating Storm-Induced Beach Change, 2 Vols., Technical Report CERC 89-9, U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS. Lyles, S.D., Hickman, L.E. Jr., and Debaugh, H.A. Jr. 1987. Sea Level Variations for the United States, 1855-1986, National Oceanic and Atmospheric Administration, Rockville, MD. Munez-Perez, Tejedor, and Medina, 1999. "Equilibrium Beach Profile Model for Reef-Protected Beaches," Journal of Coastal Research. 15, 4. Olsen Associates, Inc. and Coastal Planning & Engineering, Inc. 1998. Feasibility Study of Structural Stabilization of Beach Fill in Broward County, Segments II and III. - Scheffner, N.W., Mark, D.J., Blain, C.A., Westerink, J.J., and Luettich, R.A., 1994. A Tropical Storm Data Base for the East and Gulf of Mexico Coasts of the United States, Dredging Research Program Report DRP-__, U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS. - SEAI, 1999. "Broward County Segments II and III Sand Samples, Sediment
and Carbonate Analysis Report," Scientific Environmental Applications, Inc., Melbourne Village, FL. - Titus, J.G., and Narayanan, V.K., 1995. The Probability of Sea Level Rise, U.S. Environmental Protection Agency, Washington D. C. - U.S. Army Corps of Engineers, Jacksonville District, "Broward County, Florida Beach Erosion Control and Hillsboro Inlet Navigation Report," 1963. - U.S. Army Corps of Engineers, "Broward County Beach Erosion Control Project, General Design Memorandum," U.S. Army Corps of Engineers, Jacksonville, FL 1981. - U.S. Army Corps of Engineers, "Phase I General Design Memorandum, Segment II of Broward County, Hillsboro Inlet to Port Everglades Beach Erosion Control and Storm Protection Study Appendices," U.S. Army Corps of Engineers, Jacksonville, FL 1981. - U.S. Army Corps of Engineers, *Shore Protection Manual*, 4th Edition, 2 vols., U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, U.S. Government Printing Office, Washington D.C., 1984. - U.S. Army Corps of Engineers, Broward County, Florida Hillsboro Inlet to Port Everglades (Segment II) Shore Protection Project, Reevaluation Report Section 934 Study with Environmental Assessment, U.S. Army Corps of Engineers, Jacksonville, FL April 1994. - U.S. Army Corps of Engineers, "Coast of Florida Erosion and Storm Effects Study, Region III, Appendices A thru I," U.S. Army Corps of Engineers, Jacksonville, FL July 1996. - U.S. Army Corps of Engineers, "Beach Fill Transitions," Coastal Engineering Technical Note II-6, Coastal Engineering Research Center, Vicksburg, MS, March 1982. **SUB-APPENDIX A-1** **CROSS-SECTIONS** # POMPANO BEACH/LAUDERDALE-BY-THE-SEA TYPICAL PROJECT CROSS-SECTIONS ## FORT LAUDERDALE ## TYPICAL PROJECT CROSS-SECTIONS # **SUB-APPENDIX A-2** # DETAILED COST ESTIMATES FOR RE-EVALUATING THE FEDERAL PROJECT WIDTH # Pompano Beach to Lauderdale by the Sea | ECL/Baseline
Extension (ft) | Nourishment
Interval (yrs) | Annualized
Costs | Primary
Benefits
(mean) | Net Benefits | |--------------------------------|-------------------------------|---------------------|-------------------------------|--------------| | 75 | 5 | \$3,516,000 | \$24,636,000 | \$21,120,000 | | 100 | 5 | \$3,984,000 | \$25,258,000 | \$21,274,000 | | 125 | 5 | \$4,530,000 | \$25,618,000 | \$21,088,000 | Sub-Appendix A-2 Re-Evaluation of the Federal Project Optimization Summary | ECL/Baseline
Extension (ft) | Nourishment
Interval (yrs) | Annualized
Costs | |--------------------------------|-------------------------------|---------------------| | 75 | 4 | \$3,523,000 | | 75 | 5 | \$3,516,000 | | 75 | 6 | \$3,528,000 | | 100 | 4 | \$3,991,000 | | 100 | 5 | \$3,984,000 | | 100 | 6 | \$3,995,000 | | 125 | 4 | \$4,535,000 | | 125 | 5 | \$4,530,000 | | 125 | 6 | \$4,531,000 | ### Estimate of Contract and Constitution Costs Pompand Baach Lauderon e-by-the Sea 70 Audied Shirveline W. (b. (f) 4 Year Renous ment releval Project Life: 50 yrs | Item | Project Year | Unil Cast | Ountify | 0 | 4 | | 12 | 16 | Renouri
20 | shment at Indica
24 | led Year
28 | 32 | 36 | 40 | 44 | 48 | |---|---|---|---|---|--|--|---|---|---|--|--|---|--|--|---|--| | Nourishment
Mobilization/Dervobilization | a | \$1,000,000 | 1 | 51,000,000 | | | | | | | | | | | | | | Boach Fill | | \$6 50 | 2,605,628 | \$16,936,579 | | | | | | | | | | | | | | Beach Tilling (ac) Hard Bottom Mitigation (ac) | | \$300
\$300,000 | 64.7
6.5 | \$19,396
\$1,950 030 | | | | | | | | | | | | | | Ist Renourishment | 4 | 4004,000 | 6.5 | 31.230 230 | | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | \$1,000,000 | | | | | | | | | | | | | Beach Fill
Beach Taling (ac) | | \$6 50
\$300 | 748,320
64.7 | | \$4,864,080
\$19,396 | | | | | | | | | | | | | Hard Bottom Mitigation (ac) | | | • | | \$0 | | | | | | | | | | | | | 2nd Renounshment | 8 | | | | | * | | | | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6.50 | 1
748,320 | | | \$1,000,000
\$4,864,080 | | | | | | | | | | | | Beach Tilling (ac) | | \$300 | 64.7 | | | 519,396 | | | | | | | | | | | | Hard Bottom Mitigation (ac)
3rd Renounshment | 12 | | | | | \$0 | | | | | | | | | | | | Mobilization/Demobilization | ·- | \$1,000,000 | 1 | | | | \$1,000,000 | | | | | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6 50
\$300 | 748,320
64.7 | | | | \$4,864,080
\$18,396 | | | | | | | | | | | Hard Bottom Mitigation (ac) | | 2500 | 04.7 | | | | \$18,386 | | | | | | | | | | | 4th Renourishment | 15 | | | | | | | | | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6.50 | 748,320 | | | | | \$1,000,000
\$4,664,080 | | | | | | | | | | Beach Tilling (ac) | | \$300 | 64.7 | | | | | \$19,398 | | | | | | | | | | Hard Bottom Mitigation (ac) 5th Renourshment | 20 | | | | | | | \$0 | | | | | | | | | | Mobilization/Demobilization | 20 | \$1,000,000 | 11 | | | | | | \$1,000,000 | | | | | | | | | Beach Fill | | \$6.50 | 748,320 | | | | | | \$4,864,080 | | | | | | | | | Beach Tilling (ac)
Hard Bottom Mitgetion (ac) | | \$300 | 54.7 | | | | | | \$19,396
\$0 | | | | | | | | | 60: Renourishment | 24 | | | | | | | | J u | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | \$1,000,000 | | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6.50
\$300 | 748,320
54.7 | | | | | | | \$4,864,080
\$19,396 | | | | | | | | Hard Bottom M-tigation (ac) | | 7.00 | | | | | | | | \$0 | | | | | | | | 7th Renourishment | 28 | \$1.000.000 | | | | | | | | | * 1 oc | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6.50 | 748,320 | | | | | | | | \$1,000,000
\$4,864,080 | | | | | | | Beach Tilling (ac) | | \$300 | 64.7 | | | | | | | | 519,396 | | | | | | | Hard Bottom Mitigation (ac)
819 Renourishment | 32 | | | | | | | | | | \$ C | | | | | | | Mobilization/Oemobilization | 34 | \$1,000,000 | 1 | | | | | | | | | \$1,000,000 | | | | | | Beach Fall | | 58,50 | 748,320 | | | | | | | | | \$6,350,720 | | | | | | Beach Tilling (ac)
Hard Bottom Mitigation (ac) | | \$300 | 64 7 | | | | | | | | | \$19,396
\$0 | | | | | | 9th Renourshment | 36 | | | | | | | | | | | şu. | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | | | \$1,000,000 | | | | | Beach Fill
Beach Tilling (ac) | | \$8 50
\$300 | 748,320
64,7 | | | | | | | | | | \$6,360,720
\$19,395 | | | | | Hard Bottom Mitigation (ac) | | | | | | | | | | | | | \$0 | | | | | 13th Renourishment | 40 | _ | | | | | | | | | | | | | | | | Medilization/Demobilization
Beach Fill | | \$1,000,000
\$8.50 | 746,320 | | | | | | | | | | | \$1,000,000
\$8,350,720 | | | | Beach Tilling (ac) | | \$300 |
64,7 | | | | | | | | | | | \$19,396 | | | | Hard Bottom Mitigation (ac) | | | | | | | | | | | | | | \$0 | | | | 11th Renout shirtent Mobilization/Demobilization | 44 | \$1,000,000 | 1 | | | | | | | | | | | | \$1,000,000 | | | Beach Fill | | \$8,50 | 748,320 | | | | | | | | | | | | \$6,360,720 | | | Beach Tilling (ac) | | \$300 | 64 7 | | | | | | | | | | | | \$19,396 | | | Hard Bottom Mitigation (ac)
12th Renounshment | 48 | | | | | | | | | | | | | | \$ 0 | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | | | | | | \$1,000,000 | | 'Seach Fill
Beach Tilling (ac) | | \$8 50
\$300 | 374,160
55.0 | | | | | | | | | | | | | \$3,180,360
\$16,760 | | Hard Bottom Mitigation (ac) | | | 20.0 | | | | | | | | | | | | | 50 | Subtotal | | 450 | | \$19,905,975 | \$5,882,475 | \$5,883,476
\$882,521 | \$5,583,476 | \$5.683,476 | \$5,863,476 | \$5,383,476 | \$5,683,475 | \$7,380,116 | \$7,380,116 | \$7,383,116 | \$7,380,118 | \$4,197,120 | | Confingency
Subjetal Contract Cost | | | | | | | 5882,521 | \$932,521 | | | | | | | \$1,107,017 | | | | | 15% | | 52 585 886
.522 891 871 | \$882,521
\$6,765,998 | \$6,765,998 | 38.785.995 | 56 785 998 | \$882.521
\$6.765.008 | \$882,521 | \$682.521
\$6.765.998 | \$1,107.017
\$3,497.134 | \$1,107,017 | \$1.107.017 | \$8.457.134 | \$629,568 | | | | | | -\$22,891,871 | \$6,765,998 | \$6,765,998 | \$8,765,995 | \$6.785.998 | \$6,765,998 | \$882,521
\$6,765,998 | \$682.521
\$6,765,998 | \$8,487,134 | \$8,487,134 | 58 487 134 | \$8,467,134 | \$629,568
\$4,826,688 | | Hourshment | | ntage of Contract | Costs | | \$6,765,998 | \$6,765,996 | \$6,765,998 | \$6,785,998 | \$6,765,998 | \$882,521
\$6,765,998 | \$882.521
\$6,765,998 | \$3,497,134 | \$8,487,134 | 58 487 134 | \$8,467,134 | \$629,568
\$4,826,688 | | Hourishment
E&D+S&A | Perce
0 | | Cosis
1 | | \$6,765,998 | \$6,765,998 | \$6,765,995 | \$6,785,998 | \$6,765,998 | \$882,521
\$6,765,998 | \$682.521
\$6,765,998 | \$8,487,134 | \$6,487,134 | 58 487.134 | \$8,467,134 | \$629,568
\$4,826,688 | | E&D+S&A
1st Renounshment | | ntage of Contract
10% | 1 | -\$22,891,871 | \$6,765,998 | \$6,765,998 | \$6,765,998 | \$6,785,998 | \$6,765,998 | \$882,521
\$6,795,998 | \$882.521
\$6,765,998 | \$8,487,134 | \$6,487,134 | 58 487.134 | \$8,467,134 | \$629,568
\$4,826,686 | | E&D+S&A
1st Ranounshment
E&D+S&A | 4 | ntage of Contract | | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,785,998 | \$6,785,998 | \$6,765,998 | \$882,521
\$6,765,998 | \$682,621
\$6,765,998 | \$3,487,134 | \$6,487,134 | 58 487.134 | \$8,467,134 | \$629,568
\$4,826,688 | | E&D+S&A
1st Renounshment
E&D+S&A
2nd Renourishment
E&D+S&A | 0
4
8 | ntage of Contract
10% | 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,785,998 | \$6.785,998 | \$6,765,998 | \$882,521
\$6,765,998 | \$682,621
\$6,765,998 | \$8,487,134 | \$8,487,134 | 59 487.134 | \$8,467,134 | \$629,568
\$4,826,688 | | E&D+G&A 1st Renounshment | 4 | ntage of Contract
10%
20%
20% | 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$882,521
\$6,765,898 | \$882,521
\$6,765,998 | \$3,487,124 | \$8,487,134 | 59 497.134 | \$6,467,134 | \$628,568
\$4,826,688 | | E&D+G&A 1st Renoumshment E&D+S&A 2nd Renoumshment E&D+S&A 3rd Renoumshment E&D+G&A | 0
4
8
12 | ntage of Contract
10%
20% | 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,785,998
\$1,353,200 | \$6.765.938 | \$6,765,998 | \$682,521
\$6,765,996 | \$682.521
\$6,765,998 | 53,487,134 | \$8,487,134 | 59 497.134 | \$8,457,134 | \$629,566
\$4,826,686 | | ESD-GSA 1at Renourshment ESD+SSA 2nd Renourshment END-GSA 3rd Renourshment END-GSA 4rd Renourshment END-GSA 4th Renourshment END-GSA | 0
4
8
12
15 | ntage of Contract
10%
20%
20% | 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6,785.998
51,353,200 | \$6,765,998 | \$682,921
\$6,795,998 | \$682.521
\$6,765,998 | 58,487,134 | \$6,487,134 | 58 497,134 | \$8,467,134 | \$629,568
\$4,826,698 | | EAD+S&A 1st Renounshment E&D+S&A 2nd Remourishment EAD+S&A 3rd Renourishment EAD+S&A 4th Renourishment EAD+S&A 5th Penounishment EAD+S&A 5th Penounishment | 0
4
8
12 | ntage of Contract
10%
20%
20%
20% | 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$685,921
\$6,765,998 | \$682.521
\$6,765,008 | 53,487,134 | \$8,487,134 | 58 497,124 | \$6,467,134 | \$638,568
\$4,826,688 | | EAD-SEA 14 Renounthment EAD-SEA 2nd Renounthment EAD-SEA 3nd Renounthment EAD-SEA 4th Renounthment EAD-SEA 4th Renounthment EAD-SEA 5th Penounthment EAD-SEA | 0
4
8
12
16
20 | ntage of Contract
10%
20%
20%
20% | 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,968
\$1,363,200 | \$682,921
\$6,765,998 | \$682.521
\$6,765,998 | 53,487,134 | \$6,487,134 | 58 497,124 | \$8,467,134 | \$628,568
\$4,826,688 | | EAD-SAA 14 Renounthrenant EAD-SAA 2nd Renounthrenant EAD-SAA 3rd Renounthrenant EAD-SAA 4th Renounthrenant EAD-SAA 5th Personanthrenant EAD-SAA 5th Personanthrenant EAD-SAA 6th Renounthrenant EAD-SAA | 0
4
8
10
16
20
24 | ntage of Contract
10%
20%
20%
20% | 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$682,521
\$6,765,996 | \$682.521
\$6,765,998 | 50,487,134 | \$1,907,017
\$8,487,134 | 59 497 124 | \$6,467,134 | \$626,606
\$4,826,606 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 3id Renountment EAD-SSA 4th Renountment EAD-SSA 4th Renountment EAD-SSA 5th Renountment EAD-SSA 5th Renountment EAD-SSA 5th Renountment EAD-SSA 5th Renountment EAD-SSA 7th Renountment | 0
4
8
12
16
20 | ntage of Contract
10%
20%
20%
20%
20%
20%
20% | 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 | \$6,765,996 | 50,487,134 | \$6,467,134 | 59 497 134 | \$8,467,134 | \$626,686
\$4,626,686 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 3id Renountment EAD-SSA 4th Renountment EAD-SSA 4th Renountment EAD-SSA 5th | 0
4
8
10
16
20
24 | ntage of Contract
10%
20%
20%
20%
20%
20%
20%
20% | 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 | \$682.521
\$6,765,998 | \$8,487,134 | \$6,467,134 | 59 497 134 | \$8,467,134 | \$628,568
\$4,826,686 | | EAD-SSA 1st Renountment EAD+SSA 2nd Renountment EAD+SSA 3nd Renountment EAD+SSA 3nd Renountment EAD+SSA 4th Renountment EAD+SSA 5th | 0
4
8
10
15
20
24
26
30 | ntage of Contract
10%
20%
20%
20%
20%
20%
20% | 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 | \$6,765,996 | \$0,487,134
\$1,687,427 | \$1,107,017
\$6,467,134 | 59 497 134 | \$8,467,134 | \$628,568
\$4,826,686 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 3rd Renountment EAD-SSA 4th Renountment EAD-SSA 5th | 0
4
a
10
15
20
24
28 | ntage of Contract
10%
20%
20%
20%
20%
20%
20% | 1 1 1 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 | \$6,765,996 | \$8,487,134 | \$6,487,13 ⁴ | 31-107-77
39-467-134 | \$8,467,134 | \$678,566
\$4.626,686 | | EAD-SSA 14 Renountment EAD SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 5th | 0
4
8
10
15
20
24
26
30 | ntage of Contract
10%
20%
20%
20%
20%
20%
20%
20%
20%
20% | 1 1 1 1 1 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 | \$6,765,996 | \$8,487,134 | \$1,697,427 | 59 497,134 | 36,467,1134 | \$678,568
\$4,826,686 | | EAD-SSA 141 Ranoumbinnent EAD-SSA 2nd Remouls himment EAD-SSA 3nd Renouls himment EAD-SSA 4th Renouls himment EAD-SSA 5th 10th Renouls himment EAD-SSA 10th Renouls himment EAD-SSA | 0
4
8
10
15
20
24
26
33
36
40 | ntage of Contract
10%
20%
20%
20%
20%
20%
20% | 1 1 1 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 | \$6,765,996 | \$8,487,134 | \$6,487,13 ⁴ | \$9.497.124
\$9.497.427 | \$6,467,134 | \$678,966
\$4,626,666 | | EAD-SSA 1at Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 5th Renountment EAD-SSA 5th Renountment EAD-SSA 5th Renountment EAD-SSA 5th Renountment EAD-SSA 6th Renountment EAD-SSA 10th Renountment EAD-SSA | 0
4
8
12
15
20
24
26
32
36 | ntage of Contract
10%
20%
20%
20%
20%
20%
20%
20%
20%
20% | 1 1 1 1 1 1 1 1 1 1 1 1 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 | \$6,765,996 | \$8,487,134 | \$6,487,13 ⁴ | 59 497,134 | 36,467,134 | \$678,696
\$4.626,696 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 5th 10th Renountment EAD-SSA 11th Renountment EAD-SSA 11th Renountment EAD-SSA 11th Renountment EAD-SSA 12th Renountment | 0
4
8
10
15
20
24
26
33
36
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 |
\$6,765,996 | \$8,487,134 | \$6,487,13 ⁴ | 59 497,134 | \$6,467,134
\$1,667,427 | \$4,625,006 | | EAD-SSA 141 Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 5th 10th Renountment EAD-SSA 10th Renountment EAD-SSA 11th Renountment EAD-SSA 11th Renountment | 0
4
8
15
16
20
24
26
32
35
40 | 10% 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | -\$22,891,871 | \$6,765,998 | \$6,765,996 | \$6,766,998 | \$6.785.99 8 | \$6,765,998 | \$6,785,998 | \$6,765,996 | \$8,487,134 | \$6,487,13 ⁴ | 59 497,134 | 36,467,134 | \$572,666
\$4,826,606 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 5th 10th Renountment EAD-SSA 11th Renountment EAD-SSA 11th Renountment EAD-SSA 11th Renountment EAD-SSA 12th Renountment | 0
4
8
15
16
20
24
26
32
35
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | -\$22,891,871
\$2,289.187 | \$6,765,098
\$1,353,200 | \$6,765,996 | \$6,795,995
\$1,353,200 | 50,785,993 | \$6,765,668 | \$6,795,998
\$1,353,200 | \$6,765,996 | \$1,697,427 | \$1,697,427 | \$1.697.427 | \$6,467,134
\$1,607,427 | \$4,625,006 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 5th Renountment EAD-SSA 8th Renountment EAD-SSA 8th Renountmentment EAD-SSA 8th Renountmentment EAD-SSA 8th Renountmentment EAD-SSA 8th Renountmentment EAD-SSA 10th Renountmentment EAD-SSA 12th Renountmentment EAD-SSA 12th Renountmentment EAD-SSA 12th Renountmentment EAD-SSA 12th Renountmentment EAD-SSA | 0
4
8
15
16
20
24
26
32
35
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | -\$22,891,871
\$2,289.187 | \$6,765,098
\$1,353,200 | \$6,765,996 | \$6,795,995 | \$6,785,998
\$1,353,200 | \$6,765,668 | \$6,795,998
\$1,353,200 | \$6,765,996 | \$8,487,134 | \$1,697,427 | \$1.697.427 | \$6,467,134
\$1,607,427 | \$4,625,006
\$905,338 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 5th Renountment EAD-SSA 8th Renountment EAD-SSA 8th Renountmentment EAD-SSA 8th Renountmentment EAD-SSA 8th Renountmentment EAD-SSA 8th Renountmentment EAD-SSA 10th Renountmentment EAD-SSA 12th Renountmentment EAD-SSA 12th Renountmentment EAD-SSA 12th Renountmentment EAD-SSA 12th Renountmentment EAD-SSA | 0
4
8
15
16
20
24
26
32
35
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | -\$22,891,871
\$2,289.187 | \$6,765,098
\$1,353,200 | \$6,765,996 | \$6,795,995
\$1,353,200 | \$6,785,998
\$1,353,200 | \$6,765,668 | \$6,795,998
\$1,353,200 | \$6,765,996 | \$1,697,427 | \$1,697,427 | \$1.697.427 | \$6,467,134
\$1,607,427 | \$4,625,006
\$905,338 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 4th Renountment EAD-SSA 5th 10th | 0
4
8
15
16
20
24
26
32
35
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | -\$22,891,871
\$2,289.187 | \$6,765,098
\$1,353,200 | \$6,765,996 | \$6,195,995 \$1,353,200 \$5,119,197 | 50,785,998 51,353,200 53,119,197 d Annual Costs | \$6,765,668
\$1,363,200
\$1,363,200 | \$6,795,998 \$1,353,200 \$1,353,200 | \$6,785,996
\$1,363,200
\$1,363,200 | \$1,697,427 | \$1,697,427 | \$1.697.427 | \$6,467,134
\$1,607,427 | \$4,625,006
\$905,338 | | EAD-SSA 14 Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 6th Renountment EAD-SSA 6th Renountment EAD-SSA 8th Renountment EAD-SSA 8th Renountment EAD-SSA 10th Renountmentment EAD-SSA 10th Renountmentment EAD-SSA 10th Renountmentment EAD-SSA 10th Renountmentmentmentmentmentmentmentmentmentme | 0
4
8
15
16
20
24
26
32
35
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$22,891,871
\$2,289,187
\$2,289,187 | \$6,765,998
\$1,353,200
\$5,114,167 | \$6,765,996 \$1,353,200 \$1,353,200 \$5,110,107 Sturmman | \$5,795,995
\$1,353,200
\$5,116,197
9-investment an | \$6,785,993 \$1,353,200 \$3,119,197 4 Annual Costs | \$6,765,668
\$1,363,203
\$1,363,203
\$9,119,167 | \$6,795,898 \$1,953,200 \$1,953,200 ahrmeni at Indece | \$6,785,996 \$1,263,200 \$1,263,200 | \$1,897,427
\$1,897,427 | \$1,697,127
\$1,697,127
\$10,184.680 | \$1.697.427
\$1.697.427 | \$6,467,134
\$1,607,427
\$10,184 500 | \$4,825,686
\$965,338
\$5,762,025 | | EAD-SSA 1st Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 4th Renountment EAD-SSA 5th 1th Renountment EAD-SSA 1th Renountment EAD-SSA 1th Renountment EAD-SSA 1th Renountment 1th Renountment 1th Renountment EAD-SSA | 0
4
8
15
16
20
24
26
32
35
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$22,891,871
\$2,289.187
\$2,289.187
\$25,181,058 | \$6,765,096
\$1,353,200
\$2,110,167 | \$6,765,996 \$1.353,200 \$1.353,200 \$58,110,107 \$58,7757 | \$6,195,995
\$1,353,200
\$1,353,200
\$56,119,197
\$12
\$6,119,197 | 50,785,998 51,353,200 53,119,197 d Annual Costs 58,119,197 | \$1,553,203
\$1,553,203
\$9,119,167
Renoun-
20
\$3,119,167 | \$6,795,998
\$1,353,200
\$1,353,200
\$8,110,197
usbrmant at Indica | \$1,363,200
\$1,363,200
\$8,119,197 | \$1,697,427
\$1,697,427
\$10,164,560 | \$0,497,134
\$1,697,427
\$10,183,580
25
\$10,184,580 | \$1,697,427
\$1,097,427
\$10,184,560 | \$6,457,134
\$1,697,427
\$10,134,560 | \$4,826,686
\$995,338
\$5,792,025 | | EAD-SSA 1st Renountment EAD-SSA 2nd Renountment EAD-SSA 2nd Renountment EAD-SSA 3nd Renountment EAD-SSA 3nd Renountment EAD-SSA 4th Renountment EAD-SSA 4th Renountment EAD-SSA 5th 6AD-SSA 10th | 0
4
8
15
16
20
24
26
32
35
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$22,891,871
\$2,289.187
\$2,289.187
\$25,181,059
\$130,111 | \$8,765,998
\$1,353,200
\$1,353,200
\$3,110,107
\$0,110,107 | \$6,765,996 \$1,353,200 \$1,353,200 \$5,116,197 Surremar \$5,119,197 \$0 | \$6,795,995
\$1,353,200
\$1,353,200
\$1,353,200
\$1,353,200
\$1,353,200
\$1,353,200 | \$0,785,993
\$1,353,200
\$1,353,200
\$2 Annual Costs
\$6,109,197
\$0 | \$1,553,200
\$1,553,200
\$1,553,200
\$2,000
\$4,110,167
\$3,110,167
\$3,110,167 | \$6,795,998
\$1,953,200
\$1,953,200
\$8,110,197
usbreard at Indicate
24
\$2,110,197
\$0 | \$6,785,996
\$1,363,200
\$1,363,200
\$1,119,197
lod Year
25
\$1,119,197
\$3,119,197 | \$1,697,427
\$1,697,427
\$10,164,560
\$0 | \$1,597,427
\$10,184,580
\$50,184,590
\$0 | \$1,697,427
\$10,164,560
\$10,164,560
\$0 | \$1,897,427
\$10,134,590
44
40,194,559 | \$4,826,686
\$905,338
\$5,792,025
\$5,792,025 | | EAD-SSA 1st Renounshment EAD-SSA Ind Renounshment EAD-SSA Ind Renounshment EAD-SSA Ind Renounshment EAD-SSA Ind Renounshment EAD-SSA Sth Renounshment EAD-SSA Sth Renounshment EAD-SSA Sth Renounshment EAD-SSA Sth Renounshment EAD-SSA Sth Renounshment EAD-SSA Oth Renounshment EAD-SSA Oth Renounshment EAD-SSA Ind | 0
4
8
15
16
20
24
26
32
35
40 | niage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$22,891,871
\$2,289.187
\$2,289.187
\$25,181,058 | \$8,765,098
\$1,353,200
\$1,353,200
\$5,110,107
\$6,110,107
\$3,110,107 | \$6,765,996 \$1.353,200 \$1.353,200 \$58,110,107 \$58,7757 | \$6,195,995
\$1,353,200
\$1,353,200
\$56,119,197
\$12
\$6,119,197 | 50,785,998 51,353,200 53,119,197 d Annual Costs 58,119,197 | \$1,553,203
\$1,553,203
\$9,119,167
Renoun-
20
\$3,119,167 | \$6,795,998
\$1,353,200
\$1,353,200
\$8,110,197
usbrmant at Indica | \$1,363,200
\$1,363,200
\$8,119,197 | \$1,697,427
\$1,697,427
\$10,164,560
\$0 | \$1,697,127
\$1,697,127
\$10,183,580
25
\$10,184,580
\$10,184,580 | \$1,697,427
\$10,164,560
\$10,164,560
\$0 | \$6,457,134
\$1,697,427
\$10,134,560 | \$4,826,686
\$995,338
\$5,792,025 | | Average Annual Cost | \$3,522,696 | |---------------------|-------------| | Interest Rate | 6 125% | | | | # Estimate of Contract and Construction Costs Pompano Beach/Lauderdale-by-the-Sea 75' Added Shoreline Width (II) 5 Year Renounshment Interval Project Life 50 yrs | Item | Project Year | Unit Cost | Quantity | o. | 5 | 10 | 15 | Rencurishment a
20 | at Indicated Year
25 | 30 | 35 | 40 | 45 | |---|----------------------------------|--|-----------------------|--|--|---|--
--|---|---|---|---|---| | lourishment. | 0 | ** and *** | | | | • | | | | | <u>-</u> | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$5.50 | 2,792,708 | \$1,000,000
\$18,152,599 | | | | | | | | | | | Beach Tilling (ac) | | \$300 | 69.0 | \$20,714 | | | | | | | | | | | Hard Bottom Mitigation (ac) | | \$300,000 | 67 | \$2,010,000 | | | | | | | | | | | st Renourishment | 5 | | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | \$1,000,000 | | | | | | | | | | Beach Fill | | \$6.50 | 935,400 | | \$6,080,100 | | | | | | | | | | Beach Tilling (ac)
Hard Bottom Mitigation (ac) | | \$300 | 69.0 | | \$20,714
\$0 | | | | | | | | | | and Bottom Witigation (ac) | 10 | | | | 3 0 | | | | | | | | | | Mobilization/Demobilization | •• | \$1,000,000 | 1 | | | \$1,000,000 | | | | | | | | | Beach Fill | | \$6.50 | 935,400 | | | \$6,080,100 | | | | | | | | | Beach Tilling (ac) | | \$300 | 69 0 | | | \$20,714 | | | | | | | | | Hard Bottom Mitigation (ac)
ird Renourishment | 15 | | | | | \$0 | | | | | | | | | Mobilization/Demobilization | 15 | \$1,000,000 | 1 | | | | \$1,000,000 | | | | | | | | Beach Fill | | \$6.50 | 935,400 | | | | \$6,080,100 | | | | | | | | Beach Tilling (ac) | | \$300 | 69 O | | | | \$20,714 | | | | | | | | Hard Bottom Mitigation (ac) | | | | | | | \$0 | | | | | | | | th Renourishment | 20 | | | | | | | | | | | | | | Mebilization/Demobilization
Beach Fill | | \$1,000,000 | 1 005 400 | | | | | \$1,000,000
\$6,080,100 | | | | | | | Beach Tilling (ac) | | \$6.50
\$300 | 935,400
69,0 | | | | | \$20,714 | | | | | | | Hard Boltom Mitigation (ac) | | \$300 | 00.0 | | | | | \$0 | | | | | | | ith Renounshment | 25 | | | | | | | 30 | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | \$1,000,000 | | | | | | Beach Fill | | \$6,50 | 935,400 | | | | | | \$6,080,100 | | | | | | Beach Tilling (ac) | | \$300 | 89.0 | | | | | | \$20,714 | | | | | | Hard Boltom Mitigation (ac) Sth Renourishment | 30 | | | | | | | | \$0 | | | | | | on Kenourishment
Mobilization/Demobilization | aU | \$1,000,000 | 1 | | | | | | | \$1,000,000 | | | | | Beach Fill | | \$8.50 | 935,400 | | | | | | | \$7,950,900 | | | | | Beach Tilling (ac) | | \$300 | 89.0 | | | | | | | \$20,714 | | | | | Hard Bottom Mitigation (ac) | | | | | | | | | | \$0 | | | | | Th Renourishment | <i>క</i> న్ | ** *** | _ | | | | | | | | h. 000 000 | | | | Mobilization/Demobilization | | \$1,000,000 | 1 00 | | | | | | | | \$1,000,000 | | | | Beach Fill
Beach Tilling (ac) | | \$8.50
\$300 | 935,400
69.0 | | | | | | | | \$7,950,900
\$20,714 | | | | Hard Bottom Mitigation (ac) | | 4500 | 05.0 | | | | | | | | \$0 | | | | th Renourishment | 40 | | | | | | | | | | ** | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | | \$1,000,000 | | | Beach Fill | | \$8.50 | 935,400 | | | | | | | | | \$7,950,900 | | | Beach Tilling (ac) | | \$300 | 69.0 | | | | | | | | | \$20,714 | | | Hard Boltom Mitigation (ac) Sth Renourishment | 45 | | | | | | | | | | | \$ D | | | Mobilization/Demobilization | 45 | \$1,000,000 | 1 | | | | | | | | | | \$1,000,00 | | Beach Fill | | \$8.50 | 935,400 | | | | | | | | | | \$7,950,90 | | Beach Tilling (ac) | | \$300 | 69.0 | | | | | | | | | | \$20,714 | | Hard Boltom Mitigation (ac) | | | | | | | | | | | | | \$0 | | Subtotal | | | | \$21,183,313 | \$7,190,814 | \$7,100,814 | \$7,100,814 | \$7,100,814 | \$7,100,814 | \$8,971,614 | \$8,971,614 | \$8,971,614 | \$8,971,61 | | Contingency | | 15% | | \$3,177,497 | \$1,065,122 | \$1,065,122 | \$1,065.122 | \$1,065,122 | \$1.065,122 | \$1,345,742 | \$1,345,742 | \$1,345,742 | \$1,345,74 | | Subtotal Contract Cost | | 10,0 | | \$24,360,810 | \$6,165,937 | \$8,165,937 | \$8,165.937 | \$8,165,937 | \$8,165,937 | \$10,317,357 | \$10,317,357 | \$10,317,357 | \$10,317,35 | | | | | | | | | | | | | | | | | | | intage of Contract | Costs | | | | | | | | | | | | Nourishment | D | 400 | _ | * 0.100.004 | | | | | | | | | | | E&D+S&/
1st Renourishment | 5 | 10% | 1 | \$2,435,081 | | | | | | | | | | | E&D+S&A | J | 20% | 1 | | \$1,633,187 | | | | | | | | | | 2nd Renourishment | 4.5 | | • | | 21/200/101 | | | | | | | | | | E&D+S&A | 70 | | | | | | | | | | | | | | | 10 | 20% | 1 | | | \$1,633,187 | | | | | | | | | 3rd Renourishment | 15 | | | | | \$1,633,187 | | | | | | | | | 3rd Renourishment
E&D+S&A | 15 | 20%
20% | 1 | | | \$1,633,187 | \$1,633,187 | | | | | | | | 3rd Renourishment
E&D+S&A
4th Renourishment | | 20% | 1 | | | \$1,633,187 | \$1,633,187 | 64.664.45 | | | | | | | 3rd Renourishment
E&D+S&A
Nh Renourishment
E&D+S&A | 15
20 | | | | | \$1,633,187 | \$1,633,187 | \$1,633,187 | | | | | | | Brd Renourishment E8D+S8A Alth Renourishment E8D+S8A SIN Renourishment | 15 | 20%
20% | 1 | | | \$1,633,187 | \$1,633,187 | \$1,633,187 | S1 833 147 | | | | | | Brd Renourishment E&D+S&A Ith Renourishment E&O+S&A Sin Renourishment E&O+S&A | 15
20 | 20% | 1 | | | \$1,633,187 | \$1,633,187 | \$ 1,633,187 | \$1,633,167 | | | | | | Bitd Renourishment E&D+S&A Ith Renounshment E&D+S&A Sith Renounshment E&O+S&A Sith Renounshment E&O+S&A Sith Renounshment E&O+S&A | 15
20
25
30 | 20%
20% | 1 | | | \$1,633,187 | \$1,633,187 | \$1,633,187 | \$1,833,167 | \$2,063,471 | | | | | Brd Renourishment E&D+S&A Alth Renourishment E&O+S&A Sih Renourishment E&O+S&A Sih Renourishment E&O+S&A Alth Renourishment E&D+S&A Alth Renourishment | 15
20
25 | 20%
20%
20%
20% | 1
1
1 | | | \$1,633,187 | \$1,633,187 | \$1,633,187 | \$1,833,167 | \$2,063,471 | | | | | did Renourishment E&D+S&A tih Renourishment E&O+S&A Sih Renourishment E&O+S&A Sih Renourishment E&O+S&A A Tih Renourishment E&D+S&A Tih Renourishment E&D+S&A | 15
20
25
30
35 | 20%
20%
20% | 1
1
1 | | | \$1,633,181 | \$1,633,187 | \$1,633,187 | \$1,833,167 | \$2,063,471 | \$2,063,471 | | | | 8rd Renourishment E&D+S&A 4th Renourishment E&O+S&A 5th Renourishment E&O+S&A 6th Renourishment E&O+S&A 7th Renourishment E&O+S&A 8th Renourishment E&O+S&A 8th Renourishment | 15
20
25
30 | 20%
20%
20%
20%
20% | 1
1
1
1 | | | \$1,633,187 | \$1,633,187 | \$1,633,187 | \$1,833,167 | \$2,063,471 | \$2,083,471 | 83.000.47 (| | | aird Renourishment E&D+S&A 4th Renounshment E&D+S&A 5th Renounshment E&O+S&A 5th Renounshment E&D+S&A 7th Renourishment E&D+S&A 8th Renourishment E&D+S&A 8th Renourishment E&D+S&A | 15
20
25
30
35
40 | 20%
20%
20%
20% | 1
1
1 | | | \$1,633,187 | \$1,633,187 | \$1,633,187 | \$1,633,167 | \$2,083,471 | \$2,083,471 | \$2,063,471 | | | aid Renourishment E&D+S&A Ith Renounshment E&D+S&A Sih Renounshment E&D+S&A Sih Renounshment E&D+S&A Sih Renounshment E&D+S&A Sih Renourishment E&D+S&A Sih Renourishment E&D+S&A Sih Renourishment E&D+S&A | 15
20
25
30
35 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | | | \$1,633,187 | \$1,633,187 | \$1,633,187 | \$1,833,167 | \$2,063,471 | \$2.083,471 | \$2,063,471 | 52 083 47 | | rd Renourishment E&D+S&A th Renourishment E&C+S&A th Renourishment E&C+S&A th Renourishment E&C+S&A th Renourishment E&D+S&A th Renourishment E&D+S&A sth Renourishment E&D+S&A th Renourishment E&D+S&A th Renourishment E&D+S&A | 15
20
25
30
35
40 | 20%
20%
20%
20%
20% | 1
1
1
1 | | | \$1,633,187 | \$1,633.187 | \$1,633,187 | \$1,633,167 | \$2,663,471 | \$2,083,471 | \$2,063,471 | \$2,083,47 | | rd Renourishment E&D+S&A th Renourishment E&O+S&A th Renourishment E&O+S&A th Renourishment E&D+S&A th Renourishment | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | \$26,793,801 | \$9,799,124 | \$1,633,181
\$9,769,124 | \$1,633.187
\$9,795,124 | | | | | \$2,083,471
\$12,380,828 | \$2,083,47
\$12,380,8 | | rid Renourishment E&D+S&A Ith Renourishment E&D+S&A Sih Renourishment E&O+S&A Sift Renourishment E&D+S&A Th Renourishment E&D+S&A Sift Renourishment E&D+S&A Sift Renourishment E&D+S&A Sift Renourishment E&D+S&A Sift Renourishment E&D+S&A | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | | | \$9,769,124 | \$9.799,124 | | | | | | | | did Renourishment E&D+S&A th Renourishment E&D+S&A Sih Renourishment E&O+S&A Sih Renourishment E&D+S&A fih Renourishment E&D+S&A dith Renourishment E&D+S&A dith Renourishment E&D+S&A dith Renourishment E&D+S&A dith Renourishment E&D+S&A | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | | | | \$9.799,124 | \$9,799,024 | \$9,769,124 | \$12,380,828 | | | | | tird Renourishment E&D+S&A Ith Renourishment E&O+S&A Sith Renourishment E&O+S&A Sith Renourishment E&D+S&A A Th Renourishment E&D+S&A Sith Renourishment E&D+S&A Sith Renourishment E&D+S&A Sith Renourishment E&D+S&A Sith Renourishment E&D+S&A | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | s | iummary-investr | \$9,769,124
ment and Annua | \$9.795,124
Il Casta | \$9,799,124
Renounstment | \$5,759,124
at indicated Year | \$12,380,828 | \$12,360,525 | \$12,380,828 | \$12,380,8 | | rid Renourishment E&D+S&A Ith Renourishment E&O+S&A Sth Renourishment E&O+S&A Sth Renourishment E&D+S&A rith Renourishment E&D+S&A Arth Renourishment E&D+S&A Arth Renourishment E&D+S&A Arth Renourishment E&D+S&A Total Construction Cost | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | s
· c | Summary-Investr | \$9,769,124
ment and Annua
10 |
\$9.795,124
il Costa
15 | \$9,799,124 Renoursement | \$9,799,124
at indicated Year
25 | \$12,380,828 | \$12,39G,525
35 | \$12,380,828
40 | \$12,380,8 | | and Renourishment E&D+S&A tth Renounshment E&O+S&A Sth Renounshment E&O+S&A Sth Renounshment E&O+S&A Sth Renounshment E&O+S&A And Renounshment E&O+S&A Sth Renounshment E&O+S&A Sth Renounshment E&D+S&A Total Construction Cost | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | 6
\$25,796,891 | 5
5
58,799,124 | \$9,769,124 ment and Annue 10 \$9,759,124 | \$9.795,124
il Costs
15
\$9.705,124 | \$9,799.124 Renourisement 20 \$9,799.124 | \$9,759,124
at indicated Year
25
\$9,759,124 | \$12,380,828 | \$12,380,828
35
\$12,380,828 | \$12,380,828
40 | \$12,380,8
45
\$12,380,8 | | Ird Renourishment E&D+S&A Ith Renourishment E&D+S&A Sth Renourishment E&D+S&A Sth Renourishment E&D+S&A Sth Renourishment E&D+S&A Th Renourishment E&D+S&A Sth Renourishment E&D+S&A Total Construction Cost Item Construction Cost Item Construction Cost | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | 6
\$25,796,891
\$139,146 | 5
\$8,799,124
\$0 | \$9,769,124
ment and Annua
10
\$9,799,124
\$9 | \$9,795,124
Il Costa
15
59,796,124 | \$9,799,124 Kenourianmeni 20 \$0,769,124 \$0 | \$9,799,124
at indicated Year
25
\$9,799,124
\$0 | \$12,380,828
30
\$12,380,828
\$3 | \$12.360,829
35
\$12.360,828
\$0 | \$12,380,828
40
\$12,380,828
\$0 | \$12,380,8
45
\$12,380,8
\$0 | | rd Renourishment E80+S8A th Total Construction Cost | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | 6
\$25,796,891 | 5
5
58,799,124 | \$9,769,124 ment and Annue 10 \$9,759,124 | \$9.795,124
il Costs
15
\$9.705,124 | \$9,799,124 Kenourianmeni 20 \$0,769,124 \$0 | \$9,799,124
at indicated Year
25
\$9,799,124
\$0 | \$12,380,828 | \$12,380,828
35
\$12,380,828 | \$12,380,828
40
\$12,380,828
\$0 | \$12,380,8
45
\$12,380,8
\$0
\$12,380,8 | | rd Repourishment E80+S8A th Renourishment E80+S8A Total Construction Cost Item construction Cost | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | 6
\$25,796,891
\$139,146 | 5
\$8,799,124
\$0 | \$9,769,124
ment and Annua
10
\$9,799,124
\$9 | \$9,795,124
Il Costa
15
59,796,124 | \$9,799,124 Renoursement 20 \$9,799,124 \$0 \$9,799,124 | \$9,799,124
at indicated Year
25
\$9,799,124
\$0 | \$12,380,828
30
\$12,380,828
\$3 | \$12.360,829
35
\$12.360,828
\$0 | \$12,380,828
40
\$12,380,828
\$0 | \$12,380,8
45
\$12,380,8
. \$0 | | Id Repourishment E&D+S&A th Renounshment E&D+S&A Total Construction Cost Item ionstruction Cost Idem | 15
20
25
30
35
40 | 20%
20%
20%
20%
20%
20% | 1
1
1
1
1 | 6
\$26,796,891
\$139,146
\$25,936,639 | 5
\$6,799,124
\$0
\$9,799,124 | \$9,769,124 ment and Annua 10 \$9,769,124 \$9 \$8,760,124 | 18 59.795,124 80 59.795,124 50 59,795,124 | \$9,799,124 Kanourianment, 20 \$0,799,124 \$0 \$8,799,124 \$2,884,236 | \$9,799,124
at indicated Year
25
\$9,799,124
\$0
\$9,799,124 | \$12,389,828
30
\$12,380,828
\$0
\$12,380,828 | \$12,360,829
35
\$12,360,828
\$0
\$12,380,828 | \$12,380,828
40
\$12,380,828
\$0
\$12,380,828 | \$12,380,
45
\$12,380,
\$0 | Average Annua (0x4) Interest Rate 50,518**,2**64 5,425% ### Estimate of Contract and Construction Costs Pompano Bacchi, auderdale by-the-Seo 75' Added Shoreline Width (h) 6 Year Renourishment Interval Project Life: 50 yrs | llem | Project Year | Unit Cost | Quantity | 0 | 6 | 12 | Renouri
18 | ishment at Indica
24 | ated Year
30 | 36 | 42 | 48 | |--|--------------|-----------------------|-------------------|---------------------------|---------------------|---------------------|---------------------|-------------------------|-------------------------|---------------------|---------------------|--------------------| | Nourishment | 0 | | | | . • | IZ | 10 | 24 | JU | 30 | 42 | 40 | | Mobilization/Demobilization | | \$1,000,000 | 1 | \$1,000,000 | | | | | | | | | | Beach Fill | | \$6.50 | 2,979,788 | \$19,368,619 | | | | | | | | | | Beach Tilling (ac) | | \$300 | 73.4 | \$22,033 | | | | | | | | | | Hard Bottom Mitigation (ac) | _ | \$300,000 | 7.0 | \$2,100,000 | | | | | | | | | | 1st Renourishment | 6 | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | \$1,000,000 | | | | | | | | | Beach Fill | | \$6.50 | 1,122,480 | | \$7,296,120 | | | | | | | | | Beach Tilling (ac) | | \$300 | 73.4 | | \$22,033 | | | | | | | | | Hard Bottom Mitigation (ac)
2nd Renourishment | 12 | | | | \$0 | | | | | | | | | Mobilization/Demobilization | 12 | \$1,000,000 | 1 | | | \$1,000,000 | | | | | | | | Beach Fill | | \$6.50 | 1,122,480 | | | \$7,296,120 | | | | | | | | Beach Tilling (ac) | | \$300 | 73.4 | | | \$22,033 | | | | | | | | Hard Bottom Mitigation (ac) | | 4 | , | | | \$0 | | | | | | | | 3rd Renourishment | 16 | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | \$1,000,000 | | | | | | | Beach Fill | | \$6.50 | 1,122,480 | | | | \$7,296,120 | | | | | | | Beach Tilling (ac) | | \$30D | 73.4 | ł | | | \$22,033 | | | | | | | Hard Bottom Mitigation (ac) | | | | · | | | \$0 | | | | | | | th Renourishment | 24 | | | ł | | | | | | | | | | Mobilization/Demobilization | | o1,000,000 | 1 | | | | | \$1,000,000 | | | | | | Beach Fill | | \$6.50 | 1,122,480 | | | | | \$7,296,120 | | | | | | Beach Tilling (ac) | | \$300 | 73.4 | | | | | \$22,033 | | | | | | Hard Bottom Mitigation (ac) | ** | | | | | | | \$0 | | | | | | 5th Renourishment | 30 | £1 000 000 | | | | | | | £4 000 000 | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$8.50 | 1 122 480 | | | | | | \$1,000,000 | | | | | Beach Tilling (ac) | | \$8.50 | 1,122,480
73,4 | | | | | | \$9,541,080
\$22,033 | | | | | Hard Bottom Mitigation (ac) | | 2460 | 10.4 | | | | | | \$22,033
\$0 | | | | | Oth Renourishment | 36 | | | | | | | | 4U | | | | | Mobilization/Demobilization | 05 | \$1,000,000 | 1 | | | | | | | \$1,000,000 | | | | Beach Fill | | \$8.50 | 1,122,480 | | | | | | | \$9,541,080 | | | | Beach Tilling (ac) | | 2300 | 73.4 | | | | | | | \$22,033 | | | | Hard Bottom Mitigation (ac) | | • | | | | | | | | SO | | | | th Renourishment | 42 | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | \$1,000,000 | | | Beach Fill | | \$8.50 | 1,122,480 | | | | | | | | \$9,541,080 | | | Beach Tilling (ac) | | \$300 | 73.4 | | | | | | | | \$22,033 | | | Hard Bottom Mitigation (ac) | | | | | | | | | | | \$0 | | | 8th Renourishment | 48 | _ | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | ł | | | | | | | | \$1,000,000 | | Beach Fill | | \$8.50 | 374,160 | 1 | | | | | | | | \$3,180,360 | | Beach Tilling (ac)
Hard Bottom Mitigation (ac) | | \$300 | 55.9 | 1 | | | | | | | | \$16,760 | | nate potion langation (ac) | | | | • | | | | | | | | \$0 | | Subtotal | - | | | \$22,490,651 | \$8,318,153 | \$8,318,153 | \$8,318,153 | \$8,318,153 | \$10,563,113 | \$10,563,113 | \$10,563,113 | \$4,197,120 | | Contingency | | 15% | | \$3,373,598 | \$1,247,723 | \$1,247,723 | \$1,247,723 | \$1,247,723 | \$1,584,467 | \$1,584,467 | \$1,584,467 | \$629.568 | | Subtotal Contract Cost | | | | \$25,864,249 | \$9,565,875 | \$9,565,875 | \$9,565,875 | \$9,565,875 | \$12,147,579 | \$12,147,579 | \$12,147,579 | \$4,826,688 | | | | | | | | | | | | | | | | | | ntage of Contract | Costs | | | | | | | | | | | Nourishment | Ð | | | } | | | | | | | | | | E&D+S&A | | 10% | 1 | \$2,586,425 | | | | | | | | | | 1st Renourishment | 6 | 06** | | 1 | | | | | | | | | | E&D+S&A | 40 | 20% | 1 | | \$1,913,175 | | | | | | | | | 2nd Renourishment
E&D+S&A | 12 | 2001 | | | | 64.040.490 | | | | | | | | E&D+S&A
3rd Renourishment | 40 | 20% | 1 | i | | \$1,913,175 | | | | | | | | SIG Renourishment
E&D+S&A | 18 | 20% | 1 | 1 | | | C1 013 17F | | | | | | | 4th Renourishment | 24 | 20% | | 1 | | | \$1,913,175 | | | | | | | E&D+S&A | 24 | 20% | 1 | ! | | | | \$1,913,175 | | | | | | 5th Renourishment | 30 | 2070 | ' | l | | | | 31,813,173 | | | | | | . E&D+S&A | | 20% | 1 | | | | | | \$2,429,516 | | | | | 6th Renourishment | 36 | | • | | | | | | 40 | | | | | E&D+S&A | = | 20% | 1 | | | | | | | \$2,429,516 | | | | 7th Renourishment | 42 | | • | | | | | | | 721.201010 | | | | E&D+S&A | - | 20% | 1 | | | | | | | | \$2,429,516 | | | 8th Renourishment | 48 | | | | | | | | | | | | | E&D+S&A | | 20% | 1 | | | | | | | | | \$965,338 | | | | | | | | | | | | | | | | Total Construction Cost | | | | \$28,450,674 | \$11,479,051 | \$11,479.051 | \$11,479,051 | \$11,479,061 | \$14,577,095 | \$14,577,095 | \$14,577,095 | \$5,792,025 | | | | | | | | | | | | | | | | | | | | Summar | y-Investment an | nd Annual Costs | | | | | | | | | | | | | | | | shment at Indica | | | | | | ltem | | | | 0 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | | | | | | | | \$11,479,051 | \$11,479,051 | \$11,479,051 | \$14,577,095 | \$14,577,095 | \$14,577,095 | \$5,792,02 | | Construction Cost | | | | \$28,450,674 | \$11,479,051 | | | | | | | | | | | | | \$28,450,674
\$147,735 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | | Construction Cost | | | | | \$0 | | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | | Construction Cost Interest During Construction Total Investment Cost | | | | \$147,735
\$28,598,409 | \$0
\$11,479,051 | \$0
\$11,479,051 | \$0
\$11,479.051 | \$0
\$11,479,051 | \$0
\$14,577,095 | \$0
\$14,577,095 | \$0
\$14,577.095 | \$0
\$5,792,025
 | Construction Cost
Derest During Construction | | | | \$147,735 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | Average Annual Cost \$3,527,908 Interest Rate \$1,125% ### Estimate of Contract and Construction Costs Pompano Beach/Lauderdate by the Cea 100 Acted Shoretine Width (f.) 4 Year Rendoutshmed Interval Project Life 50 year | | | | | | | | Project Life 50 | · yra | | | | | | | | | |---|--------------|------------------------|-----------------|-----------------------------|--------------------------|--------------------------|--------------------------|-------------------------|----------------------------|--|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Item | Project Year | Unit Cost | Quantity | 0 | a | В | 12 | 16 | Renouris
20 | shment at Indicas
24 | ed Year
28 | 32 | 36 | 40 | 44 | 48 | | Journahment
Mobilization/Demobilization | 0 | \$1,000,000 | 1 | \$1,000,000 | | - | | | | | | | | | | | | Beach Fill | | \$6 50 | 3,224,730 | \$20,960,745 | | | | | | | | | | | | | | Beach Tilling (ac)
Hard Boltom Mitigation (ac) | | \$300
\$360,000 | 80 3
12,0 | \$24,104
\$3,500,000 | | | | | | | | | | | | | | 1st Renoudshment
Mobilization/Demobilization | 4 | \$1,000,000 | 1 | | \$1,000,000 | | | | | | | | | | | | | Beach Fill
Beach Tilling (sc) | | \$6.50
\$300 | 746,320
80 3 | | \$4,864,080
\$24,104 | | | | | | | | | | | | | Hard Solton Miligation (ac) | | \$300 | au 3 | | \$0 | | | | | | | | | | | | | 2nd Rengunshment
Mobilization/Demobilization | | \$1,000,000 | 1 | | | \$1,000,000 | | | | | | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6.50
\$300 | 748,320
50.3 | | | \$4,864,080
\$24,104 | | | | | | | | | | | | Hard Boltom Miligation (ac) | | 4300 | 50.2 | | | \$0 | | | | | | | | | | | | 3rd Renounsement
Mobilization/Demobilization | 12 | \$1,000,000 | 1 | | | | 51,000,000 | | | | | | | | | | | Beach Fi'l
Beach Tilling (ac) | | 56 50
\$300 | 748,320
80.3 | i | | | \$4,864,080
\$24,104 | | | | | | | | | | | Hard Beltom Miligation (ac)
4th Renousishment | 16 | | | | | | 50 | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | \$1,000,000 | | | | | | | | | | Beach Fill
Beach Tilling (sc) | | \$6.50
530 0 | 748,320
80 3 | | | | | \$4,664,080
\$24,104 | | | | | | | | | | Hard Bottom Mitigation (ac)
5th Renourishment | 20 | | | | | | | \$3 | | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000.000
\$6.50 | 1
748.320 | | | | | | \$1,000,000
\$4,864,000 | | | | | | | | | Beach Tilling (ac) | | \$300 | 80.3 | | | | | | 524,104 | | | | | | | | | Hard Bottom Myligation (sc)
6th Renounshment | 24 | | | | | | | | \$0 | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1 000 000
\$6 50 | 1
748.320 | | | | | | | \$1,000,000 | | | | | | | | Beach Tilling (ec)
Hard Boltom Mitigation (ac) | | \$300 | 803 | 1 | | | | | | \$24,104
\$0 | | | | | | | | 7th Ranour shment | 28 | | | | | | | | | | ***** | | | | | | | Mobilization/Demobilization
Basch Fifl | | \$1,000,000
\$6,50 | 748.320 | | | | | | | | \$1,000,000
\$4,964,080 | | | | | | | Beach Tisling (ec)
Hard Soltom Mitigation (ec) | | \$300 | 80.3 | | | | | | | | \$24,104
\$0 | | | | | | | Sth Renourshment
Mobilization/Demobilization | 32 | \$1,000.000 | 1 | | | | | | | | | \$1,000,000 | | | | | | Beach Fel | | \$8,50 | 748,320 | | | | | | | | | \$6,360,720
\$24,104 | | | | | | Beach Tilling (ac)
Hard Soltom Miligation (ac) | | \$300 | 80.3 | | | | | | | | | \$24,104 | | | | | | 9tq Renourishment Mobilization/Demobilization | 36 | \$1,000,000 | 1 | | | | | | | | | | \$1,000,000 | | | | | Beach Fill
Beach Tilling (sc) | | \$8 50
\$300 | 748,320
80.3 | | | | | | | | | | \$6,360,720
\$24,104 | | | | | Hard Settern Mitigation (sc) | | 45010 | 30.3 | | | | | | | | | | \$0 | | | | | 10th Renourishment Mobilization/Demobilization | 40 | \$1,000,000 | 1 | | | | | | | | | | | \$1,300,300 | | | | Geach Fill
Beach Tilling (ac) | | \$6.50
\$300 | 748,320
80.3 | | | | | | | | | | | 56,360,720
\$24,104 | | | | Hard Bottom Mitigation (ac) | | 4000 | | | | | | | | | | | | 50 | | | | 11th Renounshment
Mobilization/Demobilization | 44 | \$1,000,000 | 1 | | | | | | | | | | | | \$1,000,000 | | | Beach Fill
Beach Tilling (ac) | | \$8 50
\$300 | 748,320
80.3 | | | | | | | | | | | | \$6,360,720
\$24,104 | | | Hetd Bottom Mitigation (ac)
12th Renourishment | 46 | | | | | | | | | | | | | | \$0 | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
58.50 | 1
374, 160 | | | | | | | | | | | | | \$1,000,000
\$3,180,360 | | Seach Tilling (ac) | | \$300 | 71.8 | | | | | | | | | | | | | \$21.468
\$0 | | Hard Sottom Mitigation (ac) | | | | | | | | | | | | | | | | | | Subtotal
Contingency | | 15% | | \$25,584,849
\$3.837.727 | \$5,888,184
\$883,228 | \$5,888,184
\$883.228 | \$5,838,184
\$863,228 | 55,888,184
\$883,226 | \$5,868,164
\$583,225 | \$5,888,184
\$883,228 | \$5,888,184
\$883,228 | \$7,384,624
\$1,107,724 | \$7,384,824
\$1,107,724 | \$7,384,624
\$1,107,734 | \$7,384,824
\$1,107,724 | \$4,201,828
\$630,274 | | Sublotal Contract Cost | | | - | \$29,422,575 | \$6,771,412 | \$6,771,412 | \$6,771,412 | 56.771,412 | \$6,771.412 | \$6,771,412 | \$6,771,412 | \$8,492,548 | \$8,497,548 | \$8,492,548 | \$8,492,548 | \$4,832,102 | | | | entage of Contract | l Costs | | | | | | | | | | | | | | | Nourschment
E&D+S&A | J | 10% | 1 | \$2,942,258 | | | | | | | | | | | | | | 1st Renourishment
E&D+S&A | 4 | 20% | | | \$1,354,282 | | | | | | | | | | | | | 2nd Renourishment
E&D+S&A | | 20% | , | 1 | | \$1,354,282 | | | | | | | | | | | | 3rd Renounshment | 12 | | | | | u | h- ==-= | | | | | | | | | | | E&D+S&A
4th Renourishment | 16 | 20% | 1 | | | | \$1,354,282 | | | | | | | | | | | E&D+S&A
5th Renou/ishmeni | 20 | 20% | 1 | | | | | \$1,354,082 | | | | | | | | | | E&D+S&A
Sth Renounshment | 24 | 20% | 1 | | | | | | \$1,354,282 | | | | | | | | | E&D+S&A | | 20% | 1 | | | | | | | \$1,354,282 | | | | | | | | 7th Renourishment
ESD+S&A | 28 | 20% | 1 | | | | | | | | \$1,354,282 | | | | | | | āth Renounshment
E&D+S&A | 32 | 20% | 1 | | | | | | | | | \$1,698,510 | | | | | | 9th Renounshment
ESD+SSA | 36 | 20% | 1 | | | | | | | | | | \$1 698.613 | | | | | 10th Renourishment | 40 | | | | | | | | | | | | g r pag.ofd | | | | | ESD+SSA
Tiin Renourishmeni | 44 | 20% | 1 | | | | | | | | | | | \$1,696,510 | | | | E&D+S&A
12th Renourishment | 48 | 20% | 1 | | | | | | | | | | | | 51,698,510 | | | E&D+S&A | | 20% | 1 | | | | | | | | | | | | | \$966,420 | | Total Construction Cost | | | ··· ··· · | 532,364,834 | \$8,125,694 | 58.125,694 | \$8.125.694 | \$8,125,694 | \$8,125,694 | \$8,125,664 | \$8,125,694 | \$10,191,057 | \$10,191,057 | \$10.191.057 | \$10,191.057 | \$5,798,522 | | | | | | | | Summa | ry-Investment on | d Annual Costs | | | | | | | | | | llem | | | | т — | | | | | | ishment at indica | | | | | | | | Construction Cost | | | | 0
\$32,364,834 | \$6,125,594 | 8
\$5:125.594 | 12
\$8,125,694 | 16
\$8,125,694 | 20
\$8,126,694 | 24
\$8,125,694 | 28
\$8,125,894 | 32
\$10,191,057 | 36
\$10,191,057 | 40
\$10,191.057 | 44
\$10,191,057 | 48
\$5,798,522 | | Interest During Construction | | | | \$168,895 | \$0 | \$0 | \$0,120,004 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | 50 | 20 | | Total Investment Cost | | | | \$32,533,729 | \$8,125,694 | \$8,125,684 | 40.000.000 | 10 101 001 | | | | | | 4 | \$10.191.057 | \$5,798,522 | | | | | | | | | \$8,125,694 | \$8,125,694 | \$8,125,694 | \$8,125,684 | \$8,125,594 | \$10, 191,057 | | \$10,191,057 | | | | Present Worth of Each Construction
Total Present Worth | | | | | \$6,406,340 | | \$3,981,512 | \$3,136,696 | \$8,125,694
\$2,474,608 | \$8,125,684
\$1,950,903
\$81,818,232 | \$8,125,894
\$1,538,030 | \$1,520,732 | \$1,198.897 | \$945,173 | \$745,144 | \$334,247 | Average Annual Cost \$3,990,613 Interest Rate 6 125% # Estimate of Contract and Construction Costs Pompano Beach Lauderdale-by-the-Sea 100 Acaded Shoreline Width (It) 5 Year Renounshinent Interval Project Life 50 yrs | llem | Project Year | Unit Cost | Quantily | | | | | | at Indicated Yea | | | | | |--|--------------|-----------------------|-------------------|------------------------------|----------------------------|---|----------------------------|----------------------------|---|-----------------------------|-----------------------------|-----------------------------|---------------------------| | Nourishment | o o | | - Country | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | | Mobilization/Demobilization | | \$1,000,000 | 1 2 111 810 | \$1,000,000 | | | | | | | | | | | Beach Fill
Beach Tilling (ac) | | \$6,50
\$300 | 3,411,610
84.7 | \$22,176,765
\$25,422 | | | | | | | | | | | Hard Bottom Mitigation (sc) | | \$300,000 | 12.2 | \$3,560,000 | | | | | | | | | | | 1st Renourishment | 5 | | | | | | | | | | | | | | Mobilization/Demobilization Beach Fill | | \$1,000,000
\$6,50 | 1
935,400 | | \$1,000,000
\$6,080,100 | | | | | | | | | | Beach Tilling (ac) | | \$300 | 84.7 | | \$25,422 | | | | | | | | | | Hard Bottom Mitigation (ac) | | • | | | SO | | | | | | | | | | 2nd Renourishment | 10 | | | | | • | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6,50 | 1
935,400 | | | \$1,000,000
\$6,080,100 | | | | | | | | | Beach Tilling (ac) | | \$300 | 84 7 | | | \$25,422 | | | | | | | | | Haro Bottom
Mitigation (ac) | | | | | | \$0 | | | | | | | | | 3rd Renourishment
Mobilization/Demobilization | 15 | \$1,000,000 | | | | | \$1,000,000 | | | | | | | | Beach Fill | | \$6.50 | 1
935,400 | | | | \$6,080,100 | | | | | | | | Beach Tilling (ac) | | \$300 | 84.7 | | | | \$25,422 | | | | | | | | Hard Bottom Mitigation (ac) | | | | | | | 50 | | | | | | | | 4th Renourishment
Mobilization/Demobilization | 20 | \$1,000,000 | 1 | | | | | \$1,000,000 | | | | | | | Beach Fill | | \$6.50 | 935,400 | | | | | \$6,080,100 | | | | | | | Beach Tilling (ac) | | \$300 | 84.7 | | | | | 125,422 | | | | | | | Hard Bottom Mitigation (ac) | ** | | | | | | | \$0 | | | | | | | 5th Renourishment
Mobilization/Demobilization | 25 | \$1,000,000 | 1 | | | | | | \$1,000,000 | | | | | | Beach Fill | | \$6.50 | 935,400 | | | | | | \$6,080,100 | | | | | | Beach Tilling (ac) | | \$300 | 84 7 | | | | | | \$25,422 | | | | | | Hard Bottom Mitigation (ac) | 20 | | | | | | | | \$0 | | | | | | 6th Renourishment
Mobil:zation/Demobilization | 30 | \$1,000,000 | 1 | | | | | | | \$1,000,000 | | | | | Beach Fill | | \$8.50 | 935,400 | | | | | | | \$7,950,900 | | | | | Beach Tilling (ac) | | \$300 | 84.7 | 1 | | | | | | \$25,422 | | | | | Hard Bottom Miligation (ac) (th Renourishmen) | ar | | | İ | | | | | | \$0 | | | | | Mobilization/Demobilization | 35 | \$1,000,000 | 1 | | | | | | | | \$1,000,000 | | | | Beach Fill | | \$8.50 | 935,400 | | | | | | | | \$7,950,900 | | | | Beach Tilling (ac) | | \$300 | 84.7 | | | | | | | | \$25,422 | | | | Hard Bottom Mitigation (ac) | 40 | | | | | | | | | | \$0 | | | | Mobilization/Demobilization | 40 | \$1,000,000 | 1 | <u> </u> | | | | | | | | \$1,000,000 | | | Beach Fill | | S8 50 | 935,400 | | | | | | | | | \$7,950,900 | | | Beach Tilling (ac) | | \$300 | 847 | | | | | | | | | \$25,422 | | | Hard Bottom Mitigation (ac) 9th Renourishment | ıe | | | 1 | | | | | | | | \$0 | | | Mobilization/Demobilization | 45 | \$1,000,000 | 1 | ļ | | | | | | | | | \$1,000,00 | | Beach Fill | | \$8.50 | 935,400 | ! | | | | | | | | | \$7,950,90 | | Beach Tilling (ac) | | \$300 | 84.7 | i | | | | | | | | | \$25,422 | | Hard Bottom Mitigation (ac) | | | | | | | | | | | | | \$D | | Subtotal | | 4581 | | \$26,862,187 | \$7,105,522 | \$7,105,522 | \$7,105,522 | \$7,105,522 | \$7,105,522 | \$8,976,322 | \$8,976,322 | \$8,976,322 | \$8,976,32 | | Sublotal Contract Cos: | | 15% | | \$4.029,328
\$30,891.515 | \$1,065,828
\$8,171,351 | \$1,065.828
\$8,171,351 | \$1.065,528
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,065,828
\$8,171,351 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$1,346,448
\$10,322,771 | \$1,346,44
\$10,322,77 | | | | | | Cub, us 1.01u | 00,77 1,001 | 4 0,111, 4 01 | 40,111,001 | \$5,111,001 | 54,771,551 | \$10.0LL,711 | ψ10,d22,171 | \$10,022,711 | #10.dLL, | | | | ntage of Contract | Costs | | | | | | | | | | | | Nourishment
E&D+S&A | 0 | 4.007 | | fra ana sea | | | | | | | | | | | 1st Renourishment | 5 | 10% | 1 | \$3,089,152 | | | | | | | | | | | E&D+S&A | | 20% | 1 | | \$1,634,270 | | | | | | | | | | 2nd Renourishment | 10 | | | | | 2.22 | | | | | | | | | E&D+S&A
3rd Renourishment | 15 | 20% | 1 | | | \$1,634,270 | | | | | | | | | E&D+S&A | 13 | 20% | 1 | | | | \$1.634,270 | | | | | | | | Ith Renourishmeni | 20 | | | | | | · · · · · | | | | | | | | ESD+S&A | | 20% | 1 | | | | | \$1,634,270 | | | | | | | 5th Renourishmenl
E&D+S&A | 25 | 20% | 1 | | | | | | \$1,694,970 | | | | | | ENDITSON
Oth Renourishment | 30 | 2J% | 7 | | | | | | \$1,634,270 | | | | | | E&D+S&A | | 20% | 1 | | | | | | | \$2,064,554 | | | | | 7th Renourishment | 35 | | | | | | | | | | | | | | E&D+S&A
8th Renourishment | an | 20% | 1 | | | | | | | | \$2,064,554 | | | | E8D+S&A | 40 | 20% | 1 | | | | | | | | | \$2,084,554 | | | 9th Renourishment | 45 | 20,0 | • | | | | | | | | | | | | E3D+S&A | | 20% | 1 | | | | | | | | | | \$2,064,55 | | . Total Construction Cost | | | | 533,980,667 | \$9,805,621 | \$9,805.621 | \$9.806,621 | \$9,805.621 | \$9,805,621 | \$12,387,325 | \$12,387,325 | \$12,387,325 | \$12,367,32 | , | iummary-Invest | ment and Annua | al Costs | | · · · · · · · · · · · · · · · · · · · | | | | | | иет | | | | 0 | 5 | 10 | 15 | Renourishment
20 | at Indicated Yea
25 | 30 | 35 | 40 | 45 | | Construction Cost | | | | \$33,980,687
\$178,208 | \$9,805,821
\$0 | \$9,805,621
\$0 | \$9,805,621
\$0 | \$9,805,621
\$0 | \$9,805,621
\$0 | \$12,387,325
\$0 | \$12,387,325
\$0 | \$12,387,325
\$0 | \$12,387,3
\$0 | | nierest During Construction | | | | | | | ** | | | | | | ** | | nlerest During Construction | | | | D24 450 57 | to per ce | E0 055 55 | | | 4 4 4 4 T T T T T T T T T T T T T T T T | E+0.00= | ### ### *** | P+4 01= 11 | *** *** | | otal Investment Cost | | | | \$34,158,874 | \$9,805,621 | \$9,805.621 | \$9,805,621 | \$9,805,621 | \$9,805,621 | \$12,387,325 | \$12,387,325 | \$12,387,325 | \$12,387,3 | | nierest During Construction | | | | \$34,158,874
\$34,158,874 | \$9,805,621
\$7,284,279 | \$9,805.621
\$5,411.256 | \$9,805,621
\$4,019,847 | \$2,988,215 | \$9,805,821
\$2,218,362
09,519 | \$12,387,325
\$2,081,836 | \$12,387,325
\$1,546,528 | \$12,387,325
\$1,148,866 | \$12,387,3
\$853,45 | Average Annual swist Interest Pale 53,933,595 5 125% ### Esumale of Contract and Construction Costs Pompano BeachtLauderdale-by-the-Sea 100* Added Shoreline Widon (ft) 6 Year Renourishment Interval Project Life: 50 yrs | Item | Project Year | Unit Cast | Quantity | 0 | 6 | 12 | | shment at Indica | | 36 | 42 | 48 | |--|--|---|---------------------------------|---|--|--|--|--|---|---|---|--| | ourishment | 0 | | • | U | | 1,2 | 18 | 24 | 30 | Jb | 42 | 48 | | Mobilization/Demobilization | - | \$1,000,000 | 1 | \$1,000,000 | | | | | | | | | | Beach Fill | | \$6.50 | 3,598,890 | \$23,392,785 | | | | | | | | | | Beach Tilling (ac) | | \$300 | 89.1 | \$26,740 | | | | | | | | | | Hard Bottom Mitigation (ac) | | \$300,000 | 12.5 | \$3,750,000 | | | | | | | | | | st Renourishment | 6 | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | \$1,000,000 | | | | | | | | | Beach Fill | | \$6.50 | 1,122,480 | | \$7,296,120 | | | | | | | | | Beach Tilling (ac) | | \$300 | 89.1 | | \$26,740 | | | | | | | | | Hard Boltom Mitigation (ac) | | | | | \$0 | | | | | | | | | nd Renourishment | 12 | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | \$1,000,000 | | | | | | | | Beach Fill | | \$6,50 | 1,122,480 | } | | \$7,296,120 | | | | | | | | Beach Tilling (ac) | | \$300 | 89.1 | } | | \$26,740 | | | | | | | | Hard Bottom Mitigation (ac) | | | | i | | \$0 | | | | | | | | rd Renourishment | 18 | | | l | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | \$1,000,000 | | | | | | | - Beach Fill | | . \$6.50 | 1,122,480 | i | | | \$7,296,120 | | | | | | | Beach Tilling (ac) | | \$300 | 89.1 | i | | | \$26,740 | | | | | | | Hard Bottom Mitigation (ac) | | | | i | | | \$0 | | | | | | | th Renourishment | 24 | | | 1 | | | | | | | | | | Mobilization/Demobilization | | 51,000,000 | 1 | ! | | | | \$1,000,000 | | | | | | Beach Filt | | \$6.50 | 1,122,480 | 1 | | | | \$7,296,120 | | | | | | Beach Tilling (ac) | | \$300 | 89.1 | 1 | | | | \$26,740 | | | | | | Hard Bottom Mitigation (ac) | | | | l | | | | sa | | | | | | th Renourishment | 30 | | | l | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | 1 | | | | | \$1,000,000 | | | | | Beach Fill | | \$8,50 | 1,122,480 | 1 | | | | | \$9.541,080 | | | | | Beach Tilling (ac) | | \$300 | 89.1 | 1 | | | | | \$26,740 | | | | | Hard Bottom Mitigation (ac) | | | | l | | | | | \$0 | | | | | th Renourishment | 36 | | | 1 | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | 1 | | | | | | \$1,000,000 | | | | Beach Fill | | \$8.50 | 1,122,480 | ł | | | | | | \$9,541,080 | | | | Beach Tilling (ac) | | \$300 | 89.1 | | | | | | | \$26,740 | | | | Hard Bottom Mitigation (ac) | | **** | •••• | i | | | | | | \$0 | | | | h Renourishment | 42 | | | l | | | | | | 4.5 | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | \$1,000,000 | | | Seach Fill | | \$8.50 | 1.122.480 | | | | | | | | \$9,541,080 | | | Beach Tilling (ac) | | \$300 | 89.1 | ľ | | | | | | | \$26,740 | | | Hard Bottom Mitigation (ac) | | * | **** | | | | | | | | \$0 | | | th Renourishment | 48 | | | | | | | | | | •• | | | Mobilization/Demobilization | ,,, | \$1,000,000 | 1 | | | | | | | | | \$1,000,000 | | Beach Fill | |
\$8.50 | 374,160 | i | | | | | | | | \$3,180,360 | | Seach Tilling (ac) | | \$300 | 71.6 | | | | | | | | | \$21,468 | | Hard Bottom Mitigation (ac) | | 0000 | | | | | | | | | | \$0 | | , | | | | ļ | | | | | | | | | | Subtotal | | | | | | | | | | | | | | | | | | \$28,169,525 | \$8,322,860 | \$8,322,860 | \$8,322,860 | \$8,322,860 | \$10,567,820 | \$10,567,820 | \$10,567,820 | \$4,201,82 | | | | 15% | | \$28,169,525
\$4.225,429 | \$1,248,429 | \$8,322,860
\$1,248,429 | \$8,322,860
\$1,248,429 | \$8,322,860
\$1,248,429 | \$10,567,820
\$1,585,173 | \$10,567,820
\$1,585,173 | | | | Ontingency Subtotal Contract Cost | | 15% | | | | | | | | | | \$630,274 | | | | 15% | | \$4.225,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | | Perce | 15%
ntage of Contract | Costs | \$4.225,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost | Percei | | Costs | \$4.225,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost lourishment E&D+S&A | | | Costs | \$4.225,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost lourishment E&D+S&A | | ntaige of Contract | | \$4.225,429
\$32,394,954 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost ourishment E&D+S&A | 0 | ntaige of Contract | | \$4.225,429
\$32,394,954 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost
lourishment
E&D+S&A
st Renourishment
E&D+S&A | 0 | ntage of Contract | 1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost
lourishment
E&D+S&A
st Renourishment
E&D+S&A | 0
6 | ntage of Contract | 1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost lourishment E&D+S&A st Renourishment E&O+S&A and Renourishment E&O+S&A | 0
6 | ntaige of Contract
10%
20% | 1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost ourishment E&0+S&A st Renourishment E&0+S&A nd Renourishment E&0+S&A rd Renourishment E&0+S&A | 0
6
12 | ntaige of Contract
10%
20% | 1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost ourishment E&0+S&A st Renourishment E&0+S&A nd Renourishment E&0+S&A rd Renourishment E&0+S&A | 0
6
12 | ntage of Contract
10%
20%
20% | 1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost ourishment E&0+S&A st Renourishment E&0+S&A nd Renourishment E&0+S&A rd Renourishment E&0+S&A | 0
6
12
18 | ntage of Contract
10%
20%
20% | 1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost ourishment E&0+S&A st Renourishment E&0+S&A nd Renourishment E&0+S&A dd Renourishment E&0+S&A dd Renourishment E&0+S&A th Renourishment E&0+S&A | 0
6
12
18 | ntage of Contract
10%
20%
20%
20% | 1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost fourishment E&0+S&A st Renourishment E&0+S&A and Renourishment E&0+S&A and Renourishment E&0+S&A and Renourishment E&0+S&A th Renourishment E&0+S&A | 0
6
12
18
24 | ntage of Contract 10% 20% 20% 20% 20% | 1
1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173
\$12,152,993 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost lourishment E&D+S&A st Renourishment E&D+S&A nd Renourishment E&D+S&A rd Renourishment E&D+S&A rd Renourishment E&D+S&A th Renourishment E&D+S&A th Renourishment E&D+S&A | 0
6
12
18
24
30 | ntage of Contract
10%
20%
20%
20% | 1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost lourishment E&0+S&A st Renourishment E&0+S&A and Renourishment E&0+S&A and Renourishment E&0+S&A th Renourishment E&0+S&A th Renourishment E&0+S&A th Renourishment | 0
6
12
18
24 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173
\$12,152,993 | \$1,585,173 · S12,182,993 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost lourishment E&D+S&A st Renourishment E&O+S&A nd Renourishment E&O+S&A rd Renourishment E&D+S&A th Renourishment E&O+S&A | 0
8
12
18
24
30
36 | ntage of Contract 10% 20% 20% 20% 20% | 1
1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173
\$12,152,993 | \$1,585,173 | \$1,585,173 | \$630,274 | | Subtotal Contract Cost lourishment E&D+S&A st Renourishment E&O+S&A nd Renourishment E&O+S&A rd Renourishment E&D+S&A th Renourishment E&O+S&A | 0
6
12
18
24
30 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1 1 1 1 1 1 1 1 1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173
\$12,152,993 | \$1,585,173 · S12,182,993 | \$1,585,173
\$12,152,993 | \$630,274 | | Subtotal Contract Cost lourishment E&D+S&A st Renourishment E&D+S&A and Renourishment E&D+S&A and Renourishment E&D+S&A th | 0
8
12
18
24
30
36 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173
\$12,152,993 | \$1,585,173 · S12,182,993 | \$1,585,173 | \$630,274 | | lourishment E&D+S&A st Renourishment E&D+S&A and Renourishment E&D+S&A and Renourishment E&D+S&A th | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173
\$12,152,993 | \$1,585,173 · S12,182,993 | \$1,585,173
\$12,152,993 | \$4,201,622
\$630,274
\$4,832,10 | | Subtotal Contract Cost lourishment E&D+S&A st Renourishment E&D+S&A and Renourishment E&D+S&A and Renourishment E&D+S&A th | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1 1 1 1 1 1 1 1 1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173
\$12,152,993 | \$1,585,173 · S12,182,993 | \$1,585,173
\$12,152,993 | \$630,274 | | Subtotal Contract Cost ourishment E&D+S&A st Renourishment E&D+S&A dd Renourishment E&D+S&A dd Renourishment E&D+S&A the | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,964
\$3,239,495 | \$1,248,428
\$9,571,289
\$1,914,258 | 51,248,429
\$9,571,289
\$1,914,258 | \$1,248,429
\$9,571,289
\$1,914,258 | \$1,248,429
\$9,571,289
\$1,914,258 | \$1,585,173
\$12,152,993
\$2,430,599 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599 | \$1,585,173
\$12,152,993
\$2,430,599 | \$630,274
\$4,832,10 | | Subtotal Contract Cost purishment E&D+S&A If Renourishment E&D+S&A Ind Renourishment E&D+S&A If Renourishment E&D+S&A | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225,429
\$32,394,954 | \$1,248,428
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,248,429
\$9,571,289 | \$1,585,173
\$12,152,993 | \$1,585,173 · S12,182,993 | \$1,585,173
\$12,152,993 | \$630,274
\$4,832,10 | | Subtotal Contract Cost ourishment E&D+S&A st Renourishment E&D+S&A dd Renourishment E&D+S&A dd Renourishment E&D+S&A the | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,954
\$3,239,495
\$3,239,495 | \$1,248,428
\$9,571,289
\$1,914,258
\$1,914,258 | \$1,248,429
\$9,571,289
\$1,914,256
\$11,485,547 | \$1,248,429
\$9,571,289
\$1,914,258 | \$1,248,429
\$9,571,289
\$1,914,258 | \$1,585,173
\$12,152,993
\$2,430,599 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599 | \$1,585,173
\$12,152,993
\$2,430,599 | \$630,274
\$4,832,10 | | Subtotal Contract Cost
lourishment E&D+S&A st Renourishment E&O+S&A nd Renourishment E&D+S&A nd Renourishment E&D+S&A th | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,954
\$3,239,495
\$3,239,495 | \$1,248,428
\$9,571,289
\$1,914,258 | \$1,248,429
\$9,571,289
\$1,914,256
\$11,485,547 | \$1,248,429
\$9,571,289
\$1,914,258 | \$1,248,429
\$9,571,289
\$1,914,258 | \$1,585,173
\$12,152,993
\$2,430,599 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599 | \$1,585,173
\$12,152,993
\$2,430,599 | \$630,274
\$4,832,10 | | Subtotal Contract Cost fourishment E&0+S&A st Renourishment E&0+S&A and Renourishment E&0+S&A and Renourishment E&0+S&A th Total Construction Cost | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,954
\$3,239,495
\$3,239,495 | \$1,248,428
\$9,571,289
\$1,914,258
\$1,914,258 | \$1,248,429
\$9,571,289
\$1,914,256
\$11,485,547 | \$1,248,429
\$9,571,289
\$1,914,258
\$1,914,258 | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599 | \$1,585,173
\$12,152,993
\$2,430,599 | \$630,274
\$4,832,10 | | Subtotal Contract Cost ourishment E&D+S&A st Renourishment E&D+S&A dd Renourishment E&D+S&A dd Renourishment E&D+S&A the | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,954
\$3,239,495
\$3,239,495
\$35,634,450
Summan | \$1,248,428
\$9,571,289
\$1,914,258
\$11,485,547
\$ | \$1,248,429
\$9,571,289
\$1,914,256
\$11,485,547
d Annual Costs | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547 | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592 | \$630,274
\$4,832,10
\$986,420
\$5,798,52 | | Subtotal Contract Cost lourishment | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,964
\$3,239,495
\$3,239,495
\$35,634,450
Summan | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
y-Investment an | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
d Annual Costs | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
Renoun: | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592 | \$630,274
\$4,832,10
\$4,832,10
\$986,420
\$5,798,52 | | Subtotal Contract Cost ourishment E&D+S&A If Renourishment E&D+S&A nd Renourishment E&D+S&A id Renourishment E&D+S&A th Renourishment E&D+S&A th Renourishment E&D+S&A th Renourishment E&D+S&A th Renourishment E&D+S&A th Renourishment E&D+S&A Total Construction Cost Item onstruction Cost | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,964
\$3,239,496
\$3,239,496
\$35,634,450
Summan | \$1,248,428
\$9,571,289
\$1,914,258
\$1,914,258
\$11,485,547
y-investment an | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
d Annual Costs | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
Renoura
18
\$11,485,547 | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
\$hment at Indica
24
\$11,485,547 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,699
\$14,583,592
Ited Year
30
\$14,583,592 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592
42
\$14,583,592 | \$630,274
\$4,832,10
\$4,832,10
\$956,420
\$5,798,52 | | Subtotal Contract Cost ourishment E&D+S&A It Renourishment E&D+S&A Ind Renourishment E&D+S&A Ind Renourishment E&D+S&A Ind Renourishment E&D+S&A Ind Renourishment E&D+S&A In Renourishment E&D+S&A In Renourishment E&D+S&A In Renourishment E&D+S&A In Renourishment E&D+S&A Total Construction Cost | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,964
\$3,239,495
\$3,239,495
\$35,634,450
Summan | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
y-Investment an | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
d Annual Costs | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
Renoun: | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592 | \$630,274
\$4,832,10
\$986,420
\$5,798,52 | | Subtotal Contract Cost ourishment E&D+S&A It Renourishment E&D+S&A and Renourishment E&D+S&A d Renourishment E&D+S&A h Renourishment E&D+S&A h Renourishment E&D+S&A h Renourishment E&D+S&A h Renourishment E&D+S&A h Renourishment E&D+S&A Total Construction Cost Item oustruction Cost terest During Construction | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,964
\$3,239,495
\$3,239,495
Summan
0
\$35,634,450
\$186,881 | \$1,248,428
\$9,571,289
\$1,914,258
\$11,485,547
y-investment an
6
\$11,485,547
\$0 | \$1,248,429
\$9,571,289
\$1,914,258
\$1,914,258
\$1,485,547
\$0 | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
Renour:
18
\$11,485,547 | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
\$11,485,547
\$11,485,547 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599
\$14,583,592
\$14,583,592
\$0 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599
\$14,583,592
\$0
\$14,583,592 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592
42
\$14,583,592
\$0 | \$630,274
\$4,832,10
\$4,832,10
\$966,420
\$5,798,52
48
\$5,798,52 | | Subtotal Contract Cost ourishment E&D+S&A if Renourishment E&D+S&A nd Renourishment E&D+S&A d Renourishment E&D+S&A h Renourishment E&D+S&A h Renourishment E&D+S&A h Renourishment E&D+S&A h Renourishment E&D+S&A h Renourishment E&D+S&A Total Construction Cost Item | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,964
\$3,239,496
\$3,239,496
\$35,634,450
Summan | \$1,248,428
\$9,571,289
\$1,914,258
\$1,914,258
\$11,485,547
y-investment an | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
d Annual Costs | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
Renoura
18
\$11,485,547 | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
\$hment at Indica
24
\$11,485,547 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,699
\$14,583,592
Ited Year
30
\$14,583,592 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599
\$14,583,592 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592
42
\$14,583,592 | \$630,274
\$4,832,10
\$4,832,10
\$956,420
\$5,798,52 | | Subtotal Contract Cost builshment | 0
6
12
18
24
30
36
42 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% | 1
1
1
1
1
1
1 | \$4.225.429
\$32,394,964
\$3,239,495
\$3,239,495
Summan
0
\$35,634,450
\$186,881 | \$1,248,428
\$9,571,289
\$1,914,258
\$11,485,547
y-investment an
6
\$11,485,547
\$0 | \$1,248,429
\$9,571,289
\$1,914,258
\$1,914,258
\$1,485,547
\$0 | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
Renour:
18
\$11,485,547 | \$1,248,429
\$9,571,289
\$1,914,258
\$11,485,547
\$11,485,547
\$11,485,547 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599
\$14,583,592
\$14,583,592
\$0 | \$1,585,173
\$12,152,993
\$12,152,993
\$2,430,599
\$14,583,592
\$0
\$14,583,592 | \$1,585,173
\$12,152,993
\$2,430,599
\$14,583,592
42
\$14,583,592
\$0 | \$630,274
\$4,832,10
\$956,420
\$5,798,52
48
\$5,798,52 | Average Annual Cest \$3,995,099 Interest Rate 6.125% ### Estimate of Cantract and Canstruction Costs Porpatio Brach-Louderdale-by-the Can 135 Addes Shoreline Width (ft) 4 Year Penc Justinest Interval Project Life: 50 yrs | Basch Fills (94) 1370 87.7 BBS 174 | | | | | | | | | | - | | | | | | | |
---|---|-------|-----------------------|---|--------------|---------------|-------------|-----------------|----------------|--------------|-----------------|----------------------------|--------------|--------------|--------------|--------------|--------------------------| | Control Cont | | | Unit Cost | Quantity | 0 . | 4 | 8 | 12 | . 16 | | | | 32 | 36 | 46 | 44 | 48 | | Series of the se | | 0 | 51 000 000 | | \$1,000,000 | | | | | | | | | | | | | | Service of the control contro | Beach Fill | | \$8.50 | 3.843,833 | 524,984,911 | | | | | | | | | | | | | | The content of | Beach Tilling (ec) | | \$300 | 96 0 | \$28,812 | | | | | | | | | | | | | | Seminonity of the control con | Hard Bottom Mitigation (sc) | A | 2300,000 | 20.6 | \$6,180,000 | | | | | | | | | | | | | | Part | Mobilization/Earnobilization | - | \$1,000,000 | 1 | 1 | \$1,000,000 | | | | | | | | | | | | | The content | - Besch Fill | | \$6.50 | | | 54,864,050 | | | | | | | | | | | | | Second | Hard Bottom Mitigation (ac) | | \$300 | 90.0 | i | | | | | | | | | | | | | | March Marc | rid Renounshment | 8 | | | | | | | | | | | | | | | | | The control of co | Mobilization/Demobilization | | \$1,000,000 | 1
748 120 | | | \$1,000,000 | | | | | | | | | | | | Second | Beach Tilling (ac) | | \$300 | | | | \$28,812 | | | | | | | | | | | | March Marc | Hard Bottom Mutgetion (ac) | | | | | | \$0 | | | | | | | | | | | | March Marc | ara kengunanmeni
Mobilization/Demobilization | 12 | \$1,000,000 | 1 | | | | \$1,000,000 | | | | | | | | | | | Control Cont | Beach Fill | | \$6.50 | 748,320 | | | | \$4,864,080 | | | | | | | | | | | 18 - Merchanter 19 | | | \$300 | 96.0 | | | | | | | | | | | | | | | Machine Mach | ih Renoudshmeni | 16 | | | | | | • | | | | | | | | | | | Part | | • | | 1 | 1 | | | | \$1,000,000 | | | | | | | | | | ## Company of the Com | Beach Filling (ac.) | | | | İ | | | | \$25.612 | | | | | | | | | | Marketonic mediate of the property prop | Hard Sottom Mitigation (ac) | | • | | | | | | | | | | | | | | | | Base Property 19 19 19 19 19 19 19 19 19 19 19 19 19 | Sth Renoushment | 20 | T4 000 000 | | | | | | | F4 600 600 | | | | | | | | | ## Control Property of the Con | Beach Fall | | \$6 50 | | | | | | | \$4.854.080 | | | | | | | | | 18 | Beach Tilling (ac) | | | | | | | | | \$25,812 | | | | | | | | | Meditasson-development all political properties of the | Hard Bottom Milipation (ac) Bih Renousshmeni | 24 | | | | | | | | 20 | | | | | | | | | See | Mobilization/Demobilization | | | 1 | | | | | | | \$1,000,000 | | | | | | | | The following Magner (ac) 1000,000 1 10000,000 1 1000,000 1 10000,000 1 1000,000 1 1000,000 1 1000,000 1 1000,000 1 1000,000 1 1000, | | | | | | | | | | | | | | | | | | | Processor Proc | | | \$30II | 96.0 | | | | | | | | | | | | | | | Banker Till 1968 | 7th Renoudshmeni | 28 | | | | | | | | | | | | | | | | | Processor Note Processor | Mobilization/Demobilization
Beach F#I | | \$1,000,000
\$6.50 | 1
748 330 | | | | | | | | \$1.080,080
\$4.864.087 | | | | | | | 15 - March | Beach Tilling (ac) | | | | | | | | | | | \$28,812 | | | | | | | Maritan Marita | Hard Bottom Mitigation (ac) | 20 | | | | | | | | | | | | | | | | | Base 18 13 13 13 13 13 13 13 | Mobilization/Demobilization | 32 | \$1,000,000 | 1 | | | | | | | | | \$1,000,000 | | | | | | Part State | Beach Fill | | 29 20 | | | | | | | | | | \$6,360,720 | | | | | | The Presentation 1 | Beach Tilling (ac) Hard Bottom Milication (ac) | | \$300 | 96.0 | | | | | | | | | | | | | | | March State | th Renourishment | 36 | | | | | | | | | | | 40 | | | | | | Separate Proper plane of the t | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | | | \$1,000,000 | | | | | ### Bloome Misspan (region of the property | | | | | | | | | | | | | | | | | | | March 19 | Hard Bottom Mitigation (ac) | | * | | | | | | | | | | | | | | | | Bases Pffing Lee \$150 \$200 \$10 \$100 | | 40 | | | | | | | | | | | | | | | | | Sear-Timp (pc)
500 800 800 800 800 800 800 800 800 800 | | | | | | | | | | | | | | | \$1,000,000 | | | | 15 Resident Milegania (16 10 10 10 10 10 10 10 10 10 10 10 10 10 | Beach Tilling (ac) | | | | | | | | | | | | | | | | | | Media Paris Miller 1 1900 1 1 1 1900 1 1 1 1900 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1 1900 1 1900 1 1 1900 | Hard Bottom Mitigation (ac) | | | | | | | | | | | | | | \$0 | | | | Beach Filing (are) 150 24,000 26 27 27 27 27 27 27 27 | 1 th Renourishment Mobilization/Demobilization | 44 | \$1 000 000 | 1 | | | | | | | | | | | | \$1,000,000 | | | Table Part | Beach Fill | | \$8.50 | 748,320 | | | | | | | | | | | | \$6,360,720 | | | 1222 Percentation 1 1 1 1 1 1 1 1 1 | Beach Tilling (ac) | | 5300 | 96 0 | | | | | | | | | | | | | | | Basch File See 374 690 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 12th Renourishment | 48 | | | | | | | | | | | | | | - | | | Besch Talling (see) 19/2 | | | | | | | | | | | | | | | | | \$1,000,00
\$3,180,36 | | Part | | | | | | | | | | | | | | | | | \$26,175 | | Cessing-region 15% | Hard Settom Mitigation (ac) | | | | | | | | | | | | | | | | \$0 | | Cessing-region 15% | Subjoint | | | | 532 193 773 | \$5,892,892 | 55 692 692 | 35 892 892 | \$5,892,892 | \$5,892,892 | 55 692 692 | \$5,892,892 | 57 388 532 | \$7,389,532 | \$7,389,530 | \$7,359,532 | \$4,206,53 | | Subtail Contract Cost Percentage of Contract Costs | | | 15% | | | | | | | | | | | | | | \$630,98 | | Novashment 0 | Sublatal Contract Cost | | | | 537,022,782 | \$6,776,526 | 56.776,826 | | | \$6,776,326 | | | | | | | 34 637,5 | | Novashment 0 1 5 18 Renovashment 4 1 5 1.355.365 | | Parce | enlane of Contract | Costs | | | | | | | | | | | | | | | 181 Removalshment | | | | | | | | | | | | | | | | | | | E80-56A 20% 1 \$1,355,365 for Renouliment 6 | ERD+S&A | | 10% | 1 | \$3,702,278 | | | | | | | | | | | | | | The Renoulishment 6 E ED-16A | ist Henourishmeni
E&D+S&4 | 4 | 20% | 4 | | \$1,356,366 | | | | | | | | | | | | | ## Present 12 | 2nd Renourishment | 6 | | | | +.10001003 | | | | | | | | | | | | | ## Fanoushirment ## 10 ## 1 ## 1,355,365 ## 1,355,365 ## 1 ## 1,355,365 ## 1,355,365 ## 1 ## 1,355,365 ## 1,355,365 ## 1 ## 1,355,365 # | | | 20% | 1 | | | \$1.355.365 | | | | | | | | | | | | In Renountainment 16 | FE MERIOUNSHMENT
E&D+S&A | 12 | 20% | 1 | | | | \$1,355,365 | | | | | | | | | | | \$16 Remountment 20 \$1,955,365 \$ \$16 Remountment 24 \$1,955,365 \$ \$16 Remountment 24 \$1,955,365 \$ \$17 Remountment 28 \$1,955,365 \$ \$1,890,592 | 4th Renounshment | 16 | | | | | | | | | | | | | | | | | ESD-93A 20% 1 | | 70 | 20% | 1 | | | | | \$1,355,365 | | | | | | | | | | September 19 | um reunoun soment
ESD+S&A | 20 | 20% |
1 | | | | | | \$1,355,365 | | | | | | | | | The Remountshipment 20 | 5th Renounshment | 24 | | | | | | | | | | | | | | | | | EAC+SEA 20% 1 S1,355,355 8th Renoulishment 32 S1,699,562 9th Renoulishment 30 S1,699,562 9th Renoulishment 40 S1,699,562 1109 Renoulishment 40 S1,699,562 1119 Renoulishment 41 S1,699,562 1119 Renoulishment 41 S1,699,562 1120 1220 Renoulishmen | | 78 | 20% | 1 | | | | | | | \$1,355,385 | | | | | | | | ## Removishment 12 | E&D+S&A | _ | 20% | 1 | | | | | | | | \$1,355,365 | | | | | | | ## Princips 10 | 8th Renoutlahment | 32 | | | | | | | | | | | ** *** | | | | | | ## 260-956A | ESU+SSA
Pth Renourishment | 36 | 20% | 1 |] | | | | | | | | \$1,099,59Z | | | | | | EACH-SEA 20% 1 S1,599,592 113 Renoulthrent 44 EACH-SEA 20% 1 S1,599,592 125 Renoulthrent 44 EACH-SEA 20% 1 S1,599,592 126 Renoulthrent 49 EACH-SEA 20% 1 S40,725,880 58,132,191 58,132,191 58,132,191 58,132,191 58,132,191 58,132,191 51,197,554 510,197,55 | E&D+S&A | | 20% | 1 | | | | | | | | | | \$1,699,592 | | | | | 119 Renoulshrent 41 | 10th Renourishment EAD+SEA | 40 | 20th | 4 | 1 | | | | | | | | | | \$1,600,500 | | | | EACH-SEA 20% 1 12th Renounthheres 49 EACH-SEA 20% 1 Total Construction Cest 540,725,860 58,132,191 58,132,191 58,132,191 58,132,191 58,132,191 58,132,191 58,132,191 58,132,191 58,132,191 510,197,554 | 11⊅ Renourishment | 44 | | , | | | | | | | | | | | 41,433,432 | | | | EAC+SSA 20% 1 Total Construction Cest 540,725,060 58,132,191 58,132,191 \$8,132,191 \$8,132,191 \$8,132,191 \$8,132,191 \$10,197,554 \$10,197,5 | E&D+S&A | | 20% | 1 | | | | | | | | | | | | \$1,699,592 | | | Total Construction Cost | | 48 | 20% | | | | | | | | | | | | | | \$967,50 | | Summary-Investment and Annual Costs | | | | <u>, , , , , , , , , , , , , , , , , , , </u> | | | | | | | | | | | | | | | | Total Construction Cost | | | | \$40,725.060 | \$8, 132, 191 | \$8,132,191 | \$6,132,191 | \$8,132,191 | 58, 132, 191 | \$8,132,191 | \$8,132,191 | \$10,197.554 | \$10,197,554 | \$10.197.554 | \$10,197,554 | \$5,805,0 | | Idem 0 4 8 12 16 20 24 28 32 35 40 44 | | | | | | | Summa | y-investment an | d Annual Costs | | | | | | | | | | 0 4 8 12 16 20 24 23 32 38 40 44 Construction Cost 540,725,060 58 12 191 56,132,191 58,132,191 56,132,191 56,132,191 56,132,191 56,132,191 57,152 570,197,554 510 | | | | | | | | , | | | | | | | | | | | Construction Cost 1 549/75/505 58.132.191 59.132.191 59.132.191 59.132.191
59.132.191 59 | ltem | | | | | , | | 47 | 10 | | nment at Incica | | 20 | - 50 | an . | 41 | 48 | | Interest During Constitution 5214,638 50 50 50 50 50 50 50 50 50 50 50 50 50 | Construction Cost | | | | | 58, 132, 191 | \$8,132,191 | \$8,132,191 | | | | | \$10,197.554 | \$10,197,554 | | | \$5,805,0 | | Total Investment Cent \$40,039.688 \$8,132.181 \$6,132.191 \$6,132.191 \$6,132.181 \$4,132.191 \$6,132.191 \$10,187.554 \$10,187.554 \$10,197.554 \$1 | | | | | | | | | | | | | | | | | \$0 | | Present North of Eath Construction \$1,000,000 \$1,1110; \$5,004,000 \$3,141,400 \$2,475.500 \$1,500,200 \$1,521,702 \$1,000,000 \$44,610 \$1,000,000 \$1, | | | | | | \$8,132,181 | \$6,132,191 | \$8,132.194 | \$8,132,191 | \$8,132,181 | \$6,132.191 | \$8,132,191 | \$10,197.554 | \$10,197.554 | \$10,197.554 | \$10,197.554 | \$5,305,0 | | Total Passent Words | Present Worth of Each Construction | | | | | | \$5,051,357 | | | | \$1,952,462 | | | | | | \$334,62 | | The state of s | otal Pisseni Worth | | - | | | | | | | | \$70,247,008 | | | | | | | Average Annual Cost \$4,534,724 (Mereal) Pare 6.125% # Estimate of Contract and Construction Costs Pompano Beach/Lauderda e-by-the-Sea 125° Added Shoreline Width (ft) 5 'fear Renounstruent Interval Project Life: 50 yrs | | Project Year | · Unit Cost | Quantity | | | | | Renourishment a | | | | | | |---|--|---|---------------------|--|---
--|--|---|--|---|---|---|--| | ltem
Nourishment | C Project rear | Onn Cost | Guarinty | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | | Mobilization/Cemobilization | • | \$1,000,000 | 1 | \$1,000,000 | | | | | | | | | | | Beach Fill | | \$6.50 | 4,030,913 | \$25,200,931 | | | | | | | | | | | Beach Tilling (ac) | | \$300 | 100.4 | \$30,130 | | | | | | | | | | | Hard Sottom Mitigation (ac)
st Renourishment | 5 | . \$300,000 | 20.9 | \$6,270,000 | | | | | | | | | | | Mobilization/Demobilization | • | \$1,000,000 | 1 | | \$1,000,000 | | | | | | | | | | Beach Fill | | \$6.50 | 935,400 | | \$6,080,100 | | | | | | | | | | Beach Tilling (ac) | | \$300 | 100.4 | | \$30,130 | | | | | | | | | | Hard Boltom Mitigation (ac) | | | | | \$3 | | | | | | | | | | Ind Renourishment | 10 | | | | | | | | | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6.50 | 1
935,400 | | | \$1,000,000
\$6,080,100 | | | | | | | | | Beach Tilling (ac) | | \$300 | 100.4 | | | \$30,130 | | | | | | | | | Hard Boltom Mitigation (ac) | | \$40 5 | | | | \$0 | | | | | | |
 | Ird Renourishment | 15 | | | ļ | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | 1 | | | \$1,000,000 | | | | | | | | Beach Fill | | \$8.50 | 935,400 | | | | \$6,080,100 | | | | | | | | Beach Tilling (ac)
Hard Bottom Miligation (ac) | | \$300 | 100.4 | | | | \$30,130
\$0 | | | | | | | | The Renourishment | 20 | | | | | | 40 | | | | | | | | Mobilization/Demobilization | 20 | \$1,000,000 | 1 | | | | | \$1,000,000 | | | | | | | Beach Fill | | \$8,50 | 935,400 | | | | | \$6,080,100 | | | | | | | Beach Tilling (ac) | | \$300 | 100,4 | 1 | | | | \$30,130 | | | | | | | Hard Bottom Mitigation (ac) | | | | | | | | \$0 | | | | | | | th Renourishment | 25 | £4.005.000 | | 1 | | | | | #4 000 = 25 | | | | | | Mobilization/Demobilization
Beach Fill | | \$1,000,000
\$6,50 | 1
935,400 | I | | | | | \$1,000,000
\$6,080,100 | | | | | | Beach Filling (ac) | | \$5.50
\$300 | 935,400 | I | | | | | \$5,080,100
\$30,130 | | | | | | Hard Bottom Mitigation (ac) | | 4000 | 100,4 | I | | | | | \$0
\$0 | | | | | | Sh Renourishment | 30 | | | 1 | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | 1 | | | | | | \$1,000,000 | | | | | Beach Fill | | \$8 50 | 935,400 | i | | | | | | \$7,950,900 | | | | | Beach Tilling (ac) | | \$300 | 100.4 | 1 | | | | | | \$30,130 | | | | | Hard Bottom Mitigation (ac)
th Renounshment | 35 | | | 1 | | | | | | \$0 | | | | | tn Kendurishment
Mobilization/Demobilization | 35 | \$1,000,000 | 1 | 1 | | | | | | | \$1,000,000 | | | | Beach Fill | | \$8.50 | 935,400 | 1 | | | | | | | \$7,950,900 | | | | Beach Tilling (ac) | | \$300 | 100.4 | | | | | | | | \$30,130 | | | | Hard Bottom Miligation (ac) | | | | | | | | | | | \$0 | | | | th Renourishment | 40 | | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | | \$1,000,000 | | | Beach Fill | | \$8.50 | 935,400 | | | | | | | | | \$7,960,900
\$30,130 | | | Beach Tilling (ac) | | \$300 | 100.4 | | | | | | | | | \$30,130 | | | Hard Bottom Mitigation (ac) Th Renourishment | 45 | | | | | | | | | | | 40 | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | | | \$1,000,00 | | Seach Fill | | \$8.50 | 935,400 | | | | | | | | | | \$7,950,90 | | Beach Tilling (ac) | | \$300 | 100 4 | | | | | | | | | | \$30,130 | | Hard Bettern Mitigation (ac) | \$0 | | Subtotat | | | | \$33,501,081 | \$7,110,230 | \$7,110,230 | \$7,110,230 | \$7,110,230 | \$7,110,230 | \$8,981,030 | \$8,981,030 | \$8,981,030 | | | Subtotat
Contingericy | | 15% | | \$5,025,159 | \$1,066,535 | \$1,066,535 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotat | | 15% | | | | | | | | | | | \$8,981,03
\$1,347,15 | | Subtotat
Contingency | | | Contra | \$5,025,159 | \$1,066,535 | \$1,066,535 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal
Contingency
Subtotal Contract Cost | | 15%
ntage of Contract | Costs | \$5,025,159 | \$1,066,535 | \$1,066,535 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotat Contingericy Subtotal Contract Cost Nourishment | Perce
0 | ntage of Contract | | \$5,025,159
\$38,526,220 | \$1,066,535 | \$1,066,535 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingency Subtotal Contract Cost Nourishment E8D+S&/ | | | Costs 1 · | \$5,025,159 | \$1,066,535 | \$1,066,535 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingericy Subtotal Contract Cost Nourishment E8D+S84 Ist Renourishment E8D+S8A | 0
5 | ntage of Contract | | \$5,025,159
\$38,526,220 | \$1,066,535 | \$1,066,535 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotat Contingency Subtotal Contract Cost Nourishment E8D+S&/ lst Renourishment E8D+S&A 2nd Renourishment | 0 | ntage of Contract
10%
20% | 1 · | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingency Subtotal Contract Cost Nourishment E8D+8&/ 1st Renourishment E4D+8AA 2nd Renourishment E6D+8AA | 0
5
10 | ntage of Contract | 1 . | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Subtotal Contract Cost Subtotal Contract Cost Nourishment E8D+S&A and Renourishment E6D+S&A and Renourishment | 0
5 | ntage of Contract
10%
20%
20% | 1 -
1
1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingency Subtotal Contract Cost Nourishment E8D+S8/ Ist Renourishment E8D+S8A 2nd Renourishment E6D+S8A drd Renourishment E6D+S8A | 0
5
10
15 | ntage of Contract
10%
20% | 1 · | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&/ 1st Renourishment E&D+S&A and Renourishment E&D+S&A and Renourishment E&D+S&A and Renourishment E&D+S&A and Renourishment E&D+S&A and Renourishment | 0
5
10 | ntage of Contract
10%
20%
20%
20% | 1 · 1 1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotat Subtotat Contract Cost Subtotal Contract Cost Nourishment E8D+S8/ 1st Renourishment E8D+S8A 2nd Renourishment E6D+S8A 3rd Renourishment E6D+S8A 4th Renourishment E6D+S8A | 0
5
10
15
20 | ntage of Contract
10%
20%
20% | 1 -
1
1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,DG5,535 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotat Subtotat Contract Cost Subtotal Contract Cost Nourishment E8D+S8/ 1st Renourishment E8D+S8A 2nd Renourishment E6D+S8A 3rd Renourishment E6D+S8A 4th Renourishment E6D+S8A | 0
5
10
15 | ntage of Contract
10%
20%
20%
20% | 1 · 1 1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,535 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtetal Contingency Subtotal Contract Cost Nourishment E8D+S&/ 1st Renourishment E8D+S&A 2nd Renourishment E8D+S&A 4nd Renourishment E8D+S&A 5th Renourishment E8D+S&A 5th Renourishment E8D+S&A 5th Renourishment E8D+S&A 5th Renourishment E8D+S&A 5th Renourishment | 0
5
10
15
20 | ntage of Contract
10%
20%
20%
20%
20%
20% | 1 -
1
1
1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,536
\$8,176,785 | \$1,347,185
\$10,328,185 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingency Subtotal Contract Cost Nourishment E&D+S&/ at Renourishment E&D+S&A and Renourishment E&D+S&A ard Renourishment E&D+S&A at bit Renourishment E&D+S&A | 0
5
10
15
20
25
30 | ntage of Contract
10%
20%
20%
20%
20% | 1 -
1
1
1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,536
\$8,176,785 | \$1,347,155 | \$1,347,155 | \$1,347,155 | \$0
\$8,981,03
\$1,047,15
\$10,328,14 | | Subtotal Contingency Subtotal Contract Cost Nourishment E8D+S&/ 1st Renourishment E8D+S&A 2nd Renourishment E8D+S&A 3rd Renourishment E8D+S&A 5th | 0
5
10
15
20
25 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% | 1 · 1 1 1 1 1 1 1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,536
\$8,176,785 | \$1,347,185
\$10,328,185 | \$1,347,185
\$10,328,185 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingericy Subtotal Contract Cost Subtotal Contract Cost Nourishment E8D+S&/ Ist Renourishment E8D+S&A Sid Renourishment E8D+S&A Sid Renourishment E8D+S&A Sid Renourishment E8D+S&A Sid Renourishment E8D+S&A Sid Renourishment E8D+S&A Contraction C8D+S&A | 0
5
10
15
20
25
30 | ntage of Contract
10%
20%
20%
20%
20%
20% | 1 1 1 1 1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,536
\$8,176,785 | \$1,347,185
\$10,328,185 | \$1,347,155 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingency Subtotal Contract Cost Nourishment E8D+S&/ 1st Renourishment E8D+S&A 2nd Renourishment E8D+S&A 3rd Renourishment E5D+S&A 3rd Renourishment E5D+S&A 3th Renourishment E5D+S&A 5th Renourishment E5D+S&A 5th Renourishment E6D+S&A 5th Renourishment | 0
5
10
15
20
25
30 | ntage of Contract
10%
20%
20%
20%
20%
20%
20%
20% | 1 - 1 1 1 1 1 1 1 1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,536
\$8,176,785 |
\$1,347,185
\$10,328,185 | \$1,347,185
\$10,328,185 | \$1,347,155
\$10,328,185 | \$8,981,03
\$1,347,15 | | Subtotal Contingency Subtotal Contract Cost Subtotal Contract Cost Nourishment E8D+S&/ Ist Renourishment E8D+S&A Ord Renourishment E8D+S&A Sith | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% | 1 · 1 1 1 1 1 1 1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,536
\$8,176,785 | \$1,347,185
\$10,328,185 | \$1,347,185
\$10,328,185 | \$1,347,155 | \$8,981,03
\$1,347,15 | | Subtotal Contingericy Subtotal Contract Cost Subtotal Contract Cost Nourishment E8D+S&/ at Renourishment E8D+S&A and Renourishment E8D+S&A ath | 0
5
10
15
20
25
30 | ntage of Contract
10%
20%
20%
20%
20%
20%
20%
20% | 1 - 1 1 1 1 1 1 1 1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,536
\$8,176,785 | \$1,347,185
\$10,328,185 | \$1,347,185
\$10,328,185 | \$1,347,155
\$10,328,185 | \$8,981,03
\$1,047,1 <u>5</u>
\$10,325,1 | | Subtotal Contingericy Subtotal Contract Cost Subtotal Contract Cost Accurishment E8D+S8/ st Renourishment E8D+S8A and Renourishment E8D+S8A th | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5.025,159
\$36,528,220
\$3,852,622 | \$1,095,535
\$8,176,765
\$1,835,363 | \$1,086,536
\$8,176,766
\$1,635,352 | \$1,636,535
\$8,176,765
\$1,635,353 | \$1,005.535
\$6,178,765
\$1,835.353 | \$1,006,536
\$8,176,785 | \$1,347,155
\$10,328,185 | \$1,347,165
\$10,328,185 | \$1,347,155
\$10,328,185 | \$8,981,03
\$1,347,13
\$10,325,1 | | Subtotal contingency Subtotal Contract Cost fourishment E8D+S&F st Renourishment E8D+S&A and Renourishment E8D+S&A ft Renourishment E8D+S&A th | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5,025,159
\$38,526,220 | \$1,056,535
\$8,176,765 | \$1,066,535
\$8,176,766 | \$1,096,535
\$8,176,765 | \$1,099,535
\$8,178,785 | \$1,066,536
\$8,176,785 | \$1,347,185
\$10,328,185 | \$1,347,165
\$10,328,185 | \$1,347,155
\$10,328,185 | \$8,981,03
\$1,347,13
\$10,325,1 | | Subtotal Contingericy Subtotal Contract Cost Subtotal Contract Cost Nourishment E8D+S&/ Ist Renourishment E8D+S&A And Renourishment E8D+S&A Ath | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5.025,159
\$36,528,220
\$3,852,622
\$42,378,843 | \$1,695,535
\$8,176,765
\$1,635,363
\$1,635,363
\$9,612,117 | \$1,085,535
\$0,176,766
\$1,835,352
\$1,835,352 | \$1,636,365
\$8,176,765
\$1,635,363
\$1,635,363 | \$1,005.535
\$6,178,765
\$1,835.353 | \$1,006,536
\$8,176,785 | \$1,347,155
\$10,328,185 | \$1,347,165
\$10,328,185 | \$1,347,155
\$10,328,185 | \$8,981,03
\$1,047,15
\$10,328,1 | | Subtotal Contingency Subtotal Contract Cost Subtotal Contract Cost Nourishment E8D+S&/ Ist Renourishment E8D+S&A 3rd Renourishment E8D+S&A 4th Renourishment E8D+S&A 5th Renourishment E8D+S&A 5th Renourishment E8D+S&A 5th Renourishment E8D+S&A 6th | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5.025,159
\$36,528,220
\$3,852,622
\$42,378,843 | \$1,695,535
\$8,176,765
\$1,635,363
\$1,635,363
\$9,612,117 | \$1,086,536
\$8,176,766
\$1,635,352 | \$1,636,365
\$8,176,765
\$1,635,363
\$1,635,363 | \$1,005.535
\$6,178,765
\$1,635,353
\$1,635,353
\$9,812,117 | \$1,006,536
\$8,176,765
\$1,635,353
\$1,635,353 | \$1,347,155
\$10,328,185
\$2,065,637
\$12,393,821 | \$1,347,165
\$10,328,185 | \$1,347,155
\$10,328,185 | \$8,981,03
\$1,347,15 | | Subtotal Contingericy Subtotal Contract Cost Subtotal Contract Cost Nourishment E8D+S&/ Ist Renourishment E8D+S&A Sid | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5.025,159
\$36,529,220
\$3,852,622
\$42,378,843 | \$1,695,535
\$8,176,765
\$1,635,353
\$1,635,353
\$8,612,117
Summary-Invest | \$1,035,035
\$8,176,765
\$1,635,352
\$9,812,117 | \$1,636,355
\$8.176,765
\$1,636,353
\$1,636,353 | \$1,005.535
\$6,178,765
\$1,835,353
\$1,835,353 | \$1,006,536
\$8,176,765
\$1,635,353
\$9,812.117 | \$1,347,155
\$10,328,185
\$2,065,637
\$12,393,821 | \$1,347,165
\$10,328,185
\$2,065,637
\$12,393,821 | \$1,347,155
\$10,328,185
\$2,065,637
\$12,393,821 | \$8,981,03
\$1,047,15
\$10,325,11
\$2,065,63 | | Subtotal Contingency Subtotal Contract Cost Nourishment E8D+S&/ Ist Renour-shment E6D+S&A and Renourishment E6D+S&A th Total Construction Cost | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5.025,159
\$36,528,220
\$3,852,622
\$42,378,543 | \$1,695,535
\$8,176,765
\$1,635,353
\$1,635,353
\$2,612,117
\$2,612,117 | \$1,085,535
\$8,176,766
\$1,635,352
\$1,635,352
\$1,635,352
\$1,635,352 | \$1,635,353
\$8,176,765
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353 | \$1,005.535
\$6,178,765
\$1,635,353
\$1,635,353
\$9,812,117
Renourishment
20
\$9,812,117 | \$1,006,536
\$8,176,765
\$1,635,353
\$1,635,353
\$1,635,353
at Indicated Yea
25
\$9,812,117 | \$1,347,155
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821 | \$1,347,165
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821 | \$1,347,155
\$10,328,185
\$2,065,637
\$12,393,821 | \$8,981,03
\$1,047,15
\$10,325,1
\$10,325,1
\$12,393,6 | | Subtotal Contingency Subtotal Contract Cost Nourishment E8D+S64 st Renourishment E8D+S8A and Renourishment E8D+S8A drd Renourishment E8D+S8A drt Renourishment E8D+S8A th Total Construction Cost | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5.025,159
\$36,528,220
\$3,852,622
\$3,852,622
\$42,378,843
\$224,464 | \$1,635,353
\$3,176,765
\$1,635,353
\$1,635,353
\$1,635,363
\$1,635,363
\$1,635,363 | \$1,085,535
\$3,176,766
\$1,635,352
\$1,635,352
\$1,635,352
\$1,635,352
\$1,635,352
\$1,635,352 | \$1,636,363
\$8,176,765
\$1,635,363
\$1,635,363
\$1,635,363
\$1,635,363 | \$1,005.535
\$6,178,765
\$1,635,353
\$1,635,353
\$9,612,117
Renourishment
20
\$9,612,117
\$0 | \$1,006,536
\$8,176,785
\$1,635,353
\$1,635,353
\$1,635,353
at Indicated Yea
25
\$9,812,117
\$0 | \$1,347,155
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821
\$12,393,821
\$0 | \$1,347,165
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821
\$5
\$12,393,821
\$0 | \$1,347,155
\$10,328,185
\$2,065,637
\$12,393,821
40
\$12,393,821
\$0 | \$8,981,03
\$1,047,15
\$10,325,1
\$10,325,1
\$12,393,8
\$12,393,8
\$12,393,8 | | Subtotal Contingency Subtotal Contract Cost dourniment E8D+S64 st Renounshment E8D+S8A nd Renounshment E8D+S8A th Total Construction Cost | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5.025,159
\$36,529,220
\$3,852,622
\$3,852,622
\$42,378,643
\$42,378,643
\$224,464
\$42,603,306 | \$1,635,363 \$1,635,363 \$1,635,363 \$2,612,117 \$2,812,117 \$5,812,117 \$0,812,117 |
\$1,085,535
\$3,176,766
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352
\$1,835,352 | \$1,636,353
\$8,176,765
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353 | \$1,005.535
\$6,178,765
\$1,635,353
\$1,635,353
\$9,812,117
Renourishment
20
\$9,812,117
\$0
\$9,812,117 | \$1,006,536
\$8,176,765
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353
\$1,635,353 | \$1,347,155
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821
\$12,393,821
\$0
\$12,393,821 | \$1,347,165
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821
\$12,393,821
\$0
\$12,393,821 | \$1,347,155
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821
\$0
\$12,393,821 | \$2,065,63
\$12,393,8
\$12,393,8 | | Subtotal contingency Subtotal Contract Cost fourishment E8D+S&f st Renourishment E8D+S&A nd Renourishment E8D+S&A dt Renourishment E8D+S&A th Total Construction Cost | 0
5
10
15
20
25
30
35
40 | ntage of Contract 10% 20% 20% 20% 20% 20% 20% 20% 20% 20% 2 | 1 | \$5.025,159
\$36,528,220
\$3,852,622
\$3,852,622
\$42,378,843
\$224,464 | \$1,635,353
\$3,176,765
\$1,635,353
\$1,635,353
\$1,635,363
\$1,635,363
\$1,635,363 | \$1,085,535
\$3,176,766
\$1,635,352
\$1,635,352
\$1,635,352
\$1,635,352
\$1,635,352
\$1,635,352 | \$1,636,363
\$8,176,765
\$1,635,363
\$1,635,363
\$1,635,363
\$1,635,363 | \$1,005.535
\$8,178,765
\$1,635,353
\$1,635,353
\$1,635,353
\$9,812,117
20
\$9,812,117
\$9,842,117
\$2,968,193 | \$1,006,536
\$8,176,785
\$1,635,353
\$1,635,353
\$1,635,353
at Indicated Yea
25
\$9,812,117
\$0 | \$1,347,155
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821
\$12,393,821
\$0 |
\$1,347,165
\$10,328,185
\$10,328,185
\$2,065,637
\$12,393,821
\$5
\$12,393,821
\$0 | \$1,347,155
\$10,328,185
\$2,065,637
\$12,393,821
40
\$12,393,821
\$0 | \$8,981.0
\$1,347,1
\$10,325,1
\$10,325,1
\$12,393,6
\$12,393,6
\$12,393,6 | Average Annual Cost nterest Rate \$4,529,845 6 125% ### Estimate of Contract and Construction Costs Pompano Beach/Lauderdate-by-the-Sen 125' Added Shoreline Widor (ti) 6 Year Renounishment Interval Project Life: 50 yrs | łtem | Project Year | Unit Cost | Quantity | 0 | 6 | 12 | Renouri:
18 | shment at Indica
24 | ted Year
30 | 36 | 42 | 48 | |---|--------------|-----------------------|--------------------|--|--|---|--|---|---|-------------------------------------|-------------------------------------|-----------------------------------| | Vourishment | 0 | | | | | | | · | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | \$1,000,000 | | | | | | | | | | Beach Fill | | \$6.50 | 4,217,993 | \$27,416,951 | | | | | | | | | | Beach Tilling (ac)
Hard Bottom Miligation (ac) | | \$300
\$300,000 | 104.8
20.8 | \$31,448
\$6,240,000 | | | | | | | | | | 1st Renourishment | 6 | \$200,000 | 20.6 | \$6,240,000 | | | | | | | | | | Mobilization/Demobilization | Ü | \$1,000,000 | 1 | | \$1,000,000 | | | | | | | | | Beach Fill | | \$6.50 | 1,122,480 | | \$7,296,120 | | | | | | | | | Beach Tilling (ac) | | \$300 | 104.8 | | \$31,448 | | | | | | | | | Hard Bottom Mitigation (ac) | | | | | \$0 | | | | | | | | | 2nd Renourishment | 12 | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | \$1,000,000 | | | | | | | | Beach Fill | | \$6.50 | 1,122,480 | | | \$7,296,120 | | | | | | | | Beach Tilling (ac) | | \$300 | 104.8 | | | \$31,448 | | | | | | | | Hard Bottom Mitigation (ac) | 40 | | | | | \$0 | | | | | | | | 3rd Renourishment
Mobilization/Demobilization | 18 | \$1,000,000 | 1 | | | | \$1,000,000 | | | | | | | Beach Fill | | \$1,000,000
\$6.50 | 1,122,480 | | | | \$7,296,120 | | | | | | | Beach Tilling (ac) | | \$300 | 104.8 | | | | \$31,448 | | | | | | | Hard Bottom Mitigation (ac) | | \$500 | 104.0 | | | | 50 | | | | | | | 4th Renourishment | 24 | | | | | | - - | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | \$1,000,000 | | | | | | Beach Fill | | \$6.50 | 1,122,480 | 1 | | | | \$7,296,120 | | | | | | Beach Tilling (ac) | | \$300 | 104.B | 1 | | | | \$31,448 | | | | | | Hard Bottom Mitigation (ac) | | | | 1 | | | | \$0 | | | | | | 5th Renourishment | 30 | ** *** | | 1 | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 422 100 | 1 | | | | | \$1,000,000 | | | | | Beach Fill | | \$8.50
\$300 | 1,122,480
104.8 | 1 | | | | | \$9,541,080
\$31,448 | | | | | Beach Tilling (ac)
Hard Bottom Miligation (ac) | | a suu | 104.8 | 1 | | | | | \$31,448
\$0 | | | | | 6th Renourishment | 36 | | | 1 | | | | | φV | | | | | Mobilization/Demobilization | 50 | \$1,000,000 | 1 | | | | | | | \$1,000,000 | | | | Beach Fill | | \$8.50 | 1,122,480 | | | | | | | \$9,541,080 | | | | Beach Tilling (ac) | | \$300 | 104.8 | | | | | | | \$31,448 | | | | Hard Bottom Miligation (ac) | | | | | | | | | | \$0 | | | | 7th Renourishment | 42 | | | | | | | | | | | | | Mobilization/Demobilization | | \$1,000,000 | 1 | | | | | | | | \$1,000,000 | | | Beach Fill | | \$8.50 | 1,122,480 | | | | | | | | \$9,541,080 | | | Beach Tilling (ac) | | \$300 | 104.8 | | | | | | | | \$31,448 | | | Hard Bottom Mitigation (ac) | | | | | | | | | | | \$0 | | | 8th Renourishment
Mobilization/Demobilization | 48 | \$1,000.000 | 1 | | | | | | | | | \$1,000,000 | | Beach Fill | | \$8.50 | 374,160 | | | | | | | | | \$3,180,360 | | Beach Tilling (ac) | | \$300 | 87.3 | ļ | | | | | | | | \$26,175 | | Hard Bottom Mitigation (ac) | | 4000 | u | , | | | | | | | | \$0 | | | | | | | | | | | | | | | | Subtotal | | | | \$34,688,399 | \$8,327,568 | \$8,327,568 | \$8,327,568 | \$8,327,568 | \$10,572,528 | \$10,572,528 | \$10,572,528 | \$4,206,535 | | Contingency | | 15% | | \$5,203,260 | \$1,249,135 | \$1,249,135 | \$1,249,135 | \$1,249,135 | \$1.585,879 | \$1,585,879 | \$1,585,879 | \$630,980 | | Sublotal Contract Cost | | | | \$39,691,659 | \$9,576,703 | \$9,576,703 | \$9,576,703 | \$9,576,703 | \$12,158,407 | \$12,158,407 | \$12,158,407 | \$4,837,516 | | | - | | | 1 | | | | | | | | | | * | | entage of Contract | Costs | 1 | | | | | | | | | | Nourishment
E&D+S&A | 0 | 10% | 1 | \$3,989,166 | | | | | | | | | | 1st Renourishment | 5 | 10% | ' | \$2,508,100 | | | | | | | | | | E&D+S&A | 5 | 20% | 1 | 1 | \$1,915,341 | | | | | | | | | 2nd Renourishment | 12 | -279 | • | 1 | Ţ.,_ JG,D * I | | | | | | | | | E&D+S&A | | 20% | 1 | 1 | | \$1,915,341 | | | | | | | | 3rd Renourishment | 18 | | | 1 | | | | | | | | | | E&D+S&A | | 20% | 1 | 1 | | | \$1.915.341 | | | | | | | 4th Renourishment | 24 | | | 1 | | | | | | | | | | E&D+S&A | | 20% | 1 | 1 | | | | \$1,915,341 | | | | | | 5th Renourishment | 30 | 0001 | | 1 | | | | | # D 401 501 | | | | | E&D+S&A | 36 | 20% | 1 | 1 | | | | | \$2,431,681 | | | | | 6th Renourishment
E&D+S&A | 3b | 20% | | 1 | | | | | | \$2,431,681 | | | | E&D+S&A
7th Renourishment | 42 | ∠11% | 1 | 1 | | | | | | 94,43T,00T | | | | E&D+S&A | 42 | 20% | 1 | 1 | | | | | | | \$2,431,681 | | | Bth Renourishment | 48 | 2370 | ' | 1 | | | | | | | WE175 14001 | | | | •• | 20% | 1 | 1 | | | | | | | | \$967,503 | | E&D+S&A | | | | | | | | | | | | | | | | | | \$43,880,825 | \$11,492,044 | \$11,492,044 | \$11,492,044 | \$11,492,044 | \$14,590,089 | \$14,590,089 | \$14,590,089 | \$5,805,019 | | | | | | | | | | | | | | | | E&D+S&A | | | | | | | | | | | | | | E&D+S&A | | | | Summar | y-Investment an | nd Annual Costs | | | | | | | | E&D+S&A Tetal Construction Cost | | | | Summar | y-Investment an | d Annual Costs | | shment at Indica | ited Year | | | · · · · · · | | E&D+S&A Total Construction Cost | | | | 0 | 6 | 12 | Renouri
18 | 24 | 30 | 36 | 42 | 48 | | E&D+S&A Total Construction Cost Item Construction Cost | | | | 0
\$43,880,825 | 6
\$11,492,044 | 12
\$11,492,044 | Renours
18
\$11,492,044 | 24
\$11,492,044 | 30
\$14,590,089 | \$14,590,089 | \$14,590,089 | \$5,805,019 | | E&D+S&A Total Construction Cost | | | | 0 | 6 | 12 | Renouri
18 | 24 | 30 | | | | | E&D+S&A Total Construction Cost ttem Construction Cost Interest During Construction | | | | 0
\$43,880,825
\$233,574 | 6
\$11,492,044
\$0 | 12
\$11,492,044
\$0 | Renours
18
\$11,492,044
- \$0 | 24
\$11,492,044
\$0 | 30
\$14,590,089
\$0 | \$14,590,089
\$0 | \$14,590,089
\$0 | \$5,805,019
\$0 | | E&D+S&A Total Construction Cost Item Construction Cost | | | | 0
\$43,880,825 | 6
\$11,492,044 | 12
\$11,492,044 | Renours
18
\$11,492,044 | 24
\$11,492,044 | 30
\$14,590,089 | \$14,590,089 | \$14,590,089 | \$5,805,019 | | E&D+S&A Total Construction Cost Item Construction Cost Interest During Construction | | | | 0
\$43,880,825
\$233,574 | 6
\$11,492,044
\$0 | 12
\$11,492,044
\$0 | Renours
18
\$11,492,044
- \$0 | 24
\$11,492,044
\$0 | 30
\$14,590,089
\$0 | \$14,590,089
\$0 | \$14,590,089
\$0 | \$5,805,019
\$0 | | E&D+S&A Total Construction Cost Item Construction Cost Interest During Construction Total Investment Cost | _ | | | 0
\$43,880,825
\$233,574
\$44,114,399 | 6
\$11,492,044
\$0
\$11,492,044 | 12
\$11,492,044
\$0
\$11,492,044 | Renours
18
\$11,492,044
\$0
\$11,492,044 | 24
\$11,492,044
\$0
\$11,492,044 | 30
\$14,590,089
\$0
\$14,590,089 | \$14,590,089
\$0
\$14,590,089 | \$14,590,089
\$0
\$14,590,089 | \$5,805,019
\$0
\$5,805.019 | Average Annual Cost \$4,531,371 Interest Rate 6,125% PiBro # **SUB-APPENDIX A-3** DETAILED COST ESTIMATES FOR EVALUATION OF THE WIDTH OF THE MODIFICATION TO THE FEDERAL PROJECT Sub-Apendix A-3 # Modification to the Federal Project Optimization Summary | [| | | 1 | |----------------|---------------|----------------|-------------| | Baseline | South Project | Nourishment | Annualized | | Extension (ft) | Limit | Interval (yrs) | Costs | | 1 | R-74 | 11 | \$1,018,000 | | 1 | R-74 | 12 | \$1,016,000 | | 1 | R-74 | 13 | \$1,017,000 | | 20 | R-74 | 11 | \$1,455,000 | | 20 | R-74 | 12 | \$1,455,000 | | 20 | R-74 | 13 | \$1,457,000 | | 25 | R-74 | 10 | \$1,575,000 | | 25 | R-74 | 11 | \$1,574,000 | | 25 | R-74 | 12 | \$1,574,000 | | 50 | R-74 | 9 | \$2,203,000 | | 50 | R-74 | 10 | \$2,202,000 | | 50 | R-74 | 11 | \$2,204,000 | ## Fort Lauderdale | Baseline
Extension (ft) | South Project
Limit | Nourishment
Interval (yrs) | Annualized
Costs | Primary
Benefits
(mean) | Net Benefits | |----------------------------|------------------------|-------------------------------|---------------------|-------------------------------|--------------------| | 1 | R-74 | 12 | \$1,016,000 | \$2,007,000 | \$991,000 | | 20 | R-74 | 12 | \$1,455,000 | \$2,773,000 | \$1,318,000 | | 25 | R-74 | 11 | \$1,574,000 | \$2,923,000 | \$1,349,000 | | 50 | R-74 | 10 | \$2,202,000 | \$3,419,000 | \$1,217,000 | # Estimate of Contract and Construction Costs Ft Lauderdale 1' Added Shoreline Width (ft) to R-74 Renourishment Interval: 11 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | rt Indicated Year
2013 | |------------------------------------|-------------------------------------|-----------------|--------------|--------------------------------------
---------------------------| | Mobilization | | \$1,000,000 | | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 485,078 | \$4,365,699 | | | | 1 | \$9.00 | 288,850 | | \$2,599,646 | | Beach Tilling (ac) | | \$300 | 0.5 | \$145 | \$145 | | Hard Bottom Mitigation (ac) | | \$300,000 | 4.0 | \$1,188,940 | - | | Subtotal | | | | \$6,554,784 | \$3,599,792 | | Contingency | | 15% | | \$983,218 | \$539,969 | | Subtotal Contract Cost | | | | \$7,538,002 | \$4,139,761 | | Nourishment | | | | | | | E&D+S&A | | 10% | - | \$753,800 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | 1 | | \$827,952 | | Total Construction Cost | | | | \$8,291,802 | \$4,967,713 | | | Summary-Investment and Annual Costs | nent and Annual | Costs | | | | Item | | | | Renourishment at Indicated Year 2002 | it Indicated Year
2013 | | Construction Cost | | | | \$8,291,802 | \$4,967,713 | | Interest During Construction | | | | \$41,384 | \$0 | | Total Investment Cost | | | | \$8,333,185 | \$4,967,713 | | Present Worth of Each Construction | | | | \$8,333,185 | \$2,583,222 | | Total Present Worth | | | | \$10,916,407 | 6,407 | | \$1,017,686 | 6.125% | | |---------------------|---------------|--| | Average Annual Cost | Interest Rate | | PABroward535056 Federal Design Document Revisions/Engineering_Appx_A\Sub-Appendix-A-3-FLL\(A-3-2-10-A-3-4-optimized interval-froot.xis)11 yrs 1/18/2002 10:58 AM # Estimate of Contract and Construction Costs Ft Lauderdale 1' Added Shoreline Width (ft) to R-74 Renourishment Interval: 12 yrs Project Life: 18 years | Mobilization \$1,000,000 Reach 3 Beach Fill (cy) 0 \$9.00 505 Beach Tilling (ac) \$300 268 Hard Bottom Mitigation (ac) \$300,000 4 Hard Bottom Mitigation (ac) \$300,000 4 Contingency \$15% 15% Subtotal Contract Cost 10% 10% Nourishment 20% 20% Total Construction Cost Summary-Investment and Annual Costs Item Item | \$1,000,000
\$9.00
\$9.00
\$300
\$300,000
15%
10% | 1
503,965
269,962
0.5
4.0 | \$1,000,000
\$4,535,685
\$1,214,668
\$6,750,499
\$1,012,575
\$7,763,074
\$7,763,074
\$776,307 | \$1,000,000
\$2,429,660
\$145
\$3,429,806
\$514,471
\$3,944,276
\$788,855 | |---|---|---------------------------------------|--|---| | Cost | \$9.00
\$9.00
\$300,000
15%
10% | 503,965
269,962
0.5
4.0 | \$4,535,685
\$145
\$1,214,668
\$6,750,499
\$1,012,575
\$7,763,074
\$7,763,074
\$776,307 | \$2,429,660
\$145
\$3,429,806
\$514,471
\$3,944,276
\$788,855 | | Cost | \$9.00
\$300
\$300,000
15%
10% | 269,962 0.5 4.0 | \$145
\$1,214,668
\$6,750,499
\$1,012,575
\$7,763,074
\$776,307
\$8,539,381 | \$2,429,660
\$145
\$3,429,806
\$514,471
\$3,944,276
\$788,855 | | Cost | \$300,000
\$300,000
15%
10%
20% | 1 1 1 | \$145
\$1,214,668
\$6,750,499
\$1,012,575
\$7,763,074
\$776,307
\$776,307 | \$145
\$3,429,806
\$514,471
\$3,944,276
\$788,855 | | Cost | \$300,000
15%
10%
20% | 0.4 | \$1,214,668
\$6,750,499
\$1,012,575
\$7,763,074
\$776,307
\$776,307 | \$3,429,806
\$514,471
\$3,944,276
\$788,855 | | Cost | 15%
10%
20% | | \$6,750,499
\$1,012,575
\$7,763,074
\$776,307
\$8,539,381 | \$3,429,806
\$514,471
\$3,944,276
\$788,855 | | Contract Cost struction Cost | 15%
10%
20% | | \$1,012,575
\$7,763,074
\$776,307
\$8,539,381 | \$3,944,276
\$3,944,276
\$788,855 | | Contract Cost struction Cost | 10% | | \$7,763,074
\$776,307
\$8,539,381 | \$3,944,276
\$788,855
\$4 733 132 | | struction Cost | 10% | | \$776,307 | \$788,855 | | struction Cost | 20% | | \$8,539,381 | \$788,855 | | struction Cost | 20% | - | \$8,539,381 | \$788,855 | | I Construction Cost | | | \$8,539,381 | \$4 733 132 | | | | | | 12.(22.1.1) | | Item | tment and Annual (| Sosts | | | | | | | Renourishment at Indicated Year | at Indicated Year | | | | | 2002 | 2014 | | Construction Cost | | | \$8,539,381 | \$4,733,132 | | Interest During Construction | | | \$42,619 | \$0 | | Total Investment Cost | | | \$8,582,000 | \$4,733,132 | | Present Worth of Each Construction | | | \$8,582,000 | \$2,319,189 | | Total Present Worth | | | \$10,901,189 | 11,189 | | Average Annual Cost
Interest Rate | \$1,016,267 | 6.125% | | |--------------------------------------|-------------------|-----------|--| | arage Annual Cost
grest Rate | | | | | | erage Annual Cost | rest Rate | | P:\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-3-FLL\(A-3-2-\ot-A-3-4-optimized interval-1foot.xls)\12 yrs 1/18/2002 10:58 AM Estimate of Contract and Construction Costs Ft Lauderdale 1' Added Shoreline Width (ft) to R-74 Renourishment Interval: 13 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2015 | |------------------------------------|----------------|-------------------------------------|----------|--------------------------------------|---------------------------| | Mobilization | | \$1,000,000 | _ | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 522,852 | \$4,705,671 | | | | 13 | \$9.00 | 251,075 | | \$2,259,674 | | Beach Tilling (ac) | | \$300 | 0.5 | \$145 | \$145 | | Hard Bottom Mitigation (ac) | | \$300,000 | 4.1 | \$1,240,397 | | | Subtotal | | | | \$6,946,214 | \$3,259,819 | | Contingency | | 15% | | \$1,041,932 | \$488,973 | | Subtotal Contract Cost | | | | \$7,988,146 | \$3,748,792 | | Nourishment | | | | | | | E&D+S&A | | 10% | ~ | \$798,815 | | | 1st Renourishment | | %02 | ₹ | | \$749 758 | | Total Construction Cost | | | | \$8,786,960 | \$4,498,551 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment at Indicated Year | at Indicated Year | | Construction Cost | | | | \$8,786,960 | \$4,498,551 | | Interest During Construction | | | | \$43,855 | \$0 | | Total Investment Cost | | | | \$8,830,815 | \$4,498,551 | | Present Worth of Each Construction | | | | \$8,830,815 | \$2,077,029 | | Total Present Worth | | | | \$10,907,844 | 17,844 | | Average Annual Cost | \$1,016,888 | |---------------------|-------------| | Interest Rate | 6.125% | | | | PABroward535056 Federal Design Document Revisions/Engineering Appx_A/Sub-Appendix-A-3-FLL(A-3-2-to-A-3-4-optimized interval-1foot.xls]13 yrs 1/18/2002 10:58 AM Estimate of Contract and Construction Costs Ft Lauderdale 20' Added Shoreline Width (ft) to R-74 Renourishment Interval: 11 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2013 | |------------------------------------|----------------|-------------------------------------|----------|--------------------------------------|---------------------------| | Mobilization | | \$1,000,000 | • | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | o : | \$9.00 | 830,009 | \$7,470,081 | 0 | | | 11 | \$9.00 | 288,850 | - | \$2,599,646 | | Beach Tilling (ac) | | \$300 | 6.7 | \$2,908 | \$2,908 | | Hard Bottom Mitigation (ac) | | \$300,000 | 5.9 | \$1,768,281 | | | Subtotal | | | | \$10,241,270 | \$3,602,554 | | Contingency | | 15% | | \$1,536,190 | \$540,383 | | Subtotal Contract Cost | | | | \$11,777,460 | \$4,142,938 | | Nourishment | | | | | | | E&D+S&A | | 10% | _ | \$1,177,746 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | - | - | \$828,588 | | Total Construction Cost | | | | \$12,955,206 | \$4,971,525 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | • | | | Item | | | | Renourishment at Indicated Year | at Indicated Year | | Construction Cost | | | | \$12,955,206 | \$4,971,525 | | Interest During Construction | | | | \$64,979 | \$0 | | Total Investment Cost | | | | \$13,020,186 | \$4,971,525 | | Present Worth of Each Construction | | | | \$13,020,186 | \$2,585,205 | | Total Present Worth | | | | \$15,605,390 | 05,390 | | Average Annual Cost | \$1,454,818 | |---------------------|-------------| | Interest Rate | 6.125% | | | | P\Broward\535056 Federal Design Document Revisions\Lngmeering_Appx_A\Sub-Appendix-A-3-FLL\\A-3-8-to-A-3-10-optimized interval-20feet.xls]11 yrs 1/18/2002 11:00 AM Estimate of Contract and Construction Costs Ft Lauderdale 20' Added Shoreline Width (ft) to R-74 Renourishment Interval: 12 yrs Project Life: 18 years | m) | Drojoot Voor | Init Cost | Ousneithy | Renourishment at Indicated Year | at Indicated Year | |------------------------------------|----------------|-------------------------------------|-----------|---------------------------------|-------------------| | | רוטומטו ו במו | OIII COSI | «dalluty | 2002 | 2014 | | Mobilization | | \$1,000,000 | ~ | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 348,896 | \$7,640,067 | | | | 12 | \$9.00 | 269,962 | | \$2,429,660 | | Beach Tilling (ac) | | \$300 | 9.7 | \$2,908 | \$2,908 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.0 | \$1,805,256 | | | Subtotal | | | | \$10,448,230 | \$3,432,568 | | Contingency | | 15% | | \$1,567,235 | \$514,885 | | Subtotal Contract
Cost | | | | \$12,015,465 | \$3,947,454 | | Nourishment | | | | | | | E&D+S&A | | 10% | ~ | \$1,201,547 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | 1 | | \$789,491 | | Total Construction Cost | | | | \$13,217,012 | \$4,736,944 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | - | | | | Renourishment at Indicated Year | at Indicated Year | | Item | | | | 2002 | 2014 | | Construction Cost | | | | \$13,217,012 | \$4,736,944 | | Interest During Construction | | | | \$66,293 | \$0 | | Total Investment Cost | | | | \$13,283,304 | \$4,736,944 | | Present Worth of Each Construction | | | | \$13,283,304 | \$2,321,057 | | Total Present Worth | | | | \$15,604,361 | 14,361 | | | | | 2000 | | | | Average Annual Cost | \$1,454,722 | |---------------------|-------------| | Interest Rate | 6.125% | | | | P:\Broward\S35056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-3-FLL\\A-3-8-to-A-3-10-optimized interval-20feet.xls]12 yrs 1/18/2002 11:00 AM Estimate of Contract and Construction Costs Ft Lauderdale 20' Added Shoreline Width (ft) to R-74 Renourishment Interval: 13 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | it Indicated Year
2015 | |------------------------------------|----------------|-------------------------------------|--------------|--------------------------------------|---| | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 867,784 | \$7,810,053 | | | | 13 | \$9.00 | 251,075 | | \$2,259,674 | | Beach Tilling (ac) | | \$300 | 9.7 | \$2,908 | \$2,908 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.1 | \$1,842,230 | | | Subtotal | | | | \$10,655,191 | \$3,262,582 | | Contingency | | 15% | | \$1,598,279 | \$489,387 | | Subtotal Contract Cost | | | | \$12,253,470 | \$3,751,970 | | Nourishment | | | | | | | E&D+S&A | | 10% | ~ | \$1,225,347 | | | 1st Renourishment | | Č | , | | () () () () () () () () () () | | E&D+S&A | | 70% | - | | \$750,394 | | Total Construction Cost | | | | \$13,478,817 | \$4,502,363 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment at Indicated Year | t Indicated Year | | | | | | 2002 | 2015 | | Construction Cost | | | | \$13,478,817 | \$4,502,363 | | Interest During Construction | | | | \$67,606 | 80 | | Total Investment Cost | | | | \$13,546,422 | \$4,502,363 | | Present Worth of Each Construction | | | | \$13,546,422 | \$2,078,789 | | Total Present Worth | | | | \$15,625,211 | 5,211 | | Average Annual Cost | \$1,456,666 | |---------------------|-------------| | Interest Rate | 6.125% | P. Neroward 535056 Federal Design Document Revisions/Engineering_Appx_A/Sub-Appendix-A-3-FLL (4-3-8-to-A-3-10-optimized interval-20feet xis)13 yrs 1/18/2002 11:00 AM Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-74 Renourishment Interval: 10 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | It Indicated Year 2012 | |------------------------------------|----------------|-------------------------------------|----------|--------------------------------------|---------------------------| | Mobilization | | \$1,000,000 | _ | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 901,893 | \$8,117,037 | | | | 10 | \$9.00 | 307,737 | | \$2,769,633 | | Beach Tilling (ac) | | \$300 | 12.1 | \$3,635 | \$3,635 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.4 | \$1,909,409 | | | Subtotal | | | | \$11,030,081 | \$3,773,268 | | Contingency | | 15% | | \$1,654,512 | \$565,990 | | Subtotal Contract Cost | | | | \$12,684,593 | \$4,339,258 | | Nourishment | | | | | | | E&D+S&A | | 10% | _ | \$1,268,459 | | | 1st Renourishment | | %U6 | t | | 4867882 | | Total Construction Cost | | | | \$13,953,053 | \$5,207,109 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment at Indicated Year 2002 | it Indicated Year
2012 | | Construction Cost | | | | \$13,953,053 | \$5,207,109 | | Interest During Construction | | | | \$70,332 | 0\$ | | Total Investment Cost | | | | \$14,023,384 | \$5,207,109 | | Present Worth of Each Construction | | | | \$14,023,384 | \$2,873,556 | | Total Present Worth | | | | \$16,896,940 | 16,940 | | _ | Average Annual Cost | \$1,575,223 | |---|---------------------|-------------| | _ | Interest Rate | 6.125% | | 1 | | | P:\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\[Table-A21-optimized interval-FLL-rev.xls]10 yrs 1/18/2002 10:53 AM Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-74 Renourishment Interval: 11 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment a 2002 | Renourishment at Indicated Year 2002 | |------------------------------------|----------------|-------------------------------------|----------|----------------------|--------------------------------------| | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 920,780 | \$8,287,023 | | | | _ | \$9.00 | 288,850 | | \$2,599,646 | | Beach Tilling (ac) | | \$300 | 12.1 | \$3,635 | \$3,635 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.5 | \$1,953,293 | | | Subtotal | | | | \$11,243,951 | \$3,603,282 | | Contingency | | 15% | | \$1,686,593 | \$540,492 | | Subtotal Contract Cost | | | | \$12,930,544 | \$4,143,774 | | Nourishment | | | | | | | E&D+S&A | | 10% | _ | \$1,293,054 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | _ | | \$828,755 | | Total Construction Cost | | | | \$14,223,598 | \$4,972,528 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | mell | | | | Renourishment a | Renourishment at Indicated Year | | | | | | 2002 | 2013 | | Construction Cost | | | | \$14,223,598 | \$4,972,528 | | Interest During Construction | | | | \$71,696 | 0\$ | | Total Investment Cost | | | | \$14,295,294 | \$4,972,528 | | Present Worth of Each Construction | | | | \$14,295,294 | \$2,585,726 | | Total Present Worth | | | | \$16,88 | \$16,881,020 | | | | | | | | | 6.125% | Interest Rate | |-------------|---------------------| | \$1,573,739 | Average Annual Cost | P.\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\[Table-A21-oplimized interval-FLL-rev.xis]11 yrs 1/18/2002 10:53 AM Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-74 Renourishment Interval: 12 yrs Project Life: 18 years | | | | 2 | | | |---|-----------------|-------------------------------------|------------|--------------------------------------|------------------| | Mobilization
Reach 3 Beach Fill (cy)
Beach Tilling (ac) | | | accountry. | 2002 | 2014 | | Reach 3 Beach Fill (cy)
Beach Tilling (ac) | | \$1,000,000 | 1 | \$1,000,000 | \$1,000,000 | | Beach Tilling (ac) | 0 | \$9.00 | 939,668 | \$8,457,009 | | | Beach Tilling (ac) | 12 | \$9.00 | 269,962 | | \$2,429,660 | | | | \$300 | 12.1 | \$3,635 | \$3,635 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.7 | \$1,997,177 | | | Subtotal | | | | \$11,457,821 | \$3,433,295 | | Contingency | | 15% | | \$1,718,673 | \$514,994 | | Subtotal Contract Cost | | | | \$13,176,494 | \$3,948,290 | | Nourishment | | | | | | | E&D+S&A | | 10% | ₹~ | \$1,317,649 | | | 1st Renourishment | | ò | • | | 000 | | E&D+S&A | | 20% | _ | | \$789,658 | | Total Construction Cost | | | | \$14,494,144 | \$4,737,948 | | Ø | Summary-Investr | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment at Indicated Year 2002 | t Indicated Year | | Construction Cost | | | | \$14,494,144 | \$4,737,948 | | Interest During Construction | | | | \$73,059 | \$0 | | Total Investment Cost | | | | \$14,567,203 | \$4,737,948 | | Present Worth of Each Construction | | | | \$14,567,203 | \$2,321,549 | | Total Present Worth | | | | \$16,888,752 | 18,752 | | Average Annual Cost | \$1,574,460 | |---------------------|-------------| | Interest Rate | 6.125% | | | | Pt/Browardt535056 Federal Design Document RevisionstEngineering_Appx_A\(Table-A21-optimized interval-FLL-revixls)12 yrs 1/18/2002 10:53 AM Estimate of Contract and Construction Costs Ft Lauderdale 50' Added Shoreline Width (ft) to R-74 Renourishment Interval: 9 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | t Indicated Year
2011 | |------------------------------------|----------------|-------------------------------------|-----------|--------------------------------------|--------------------------| | Mobilization | | \$1,000,000 | 1 | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 1,336,863 | \$12,031,763 | | | | თ | \$9.00 | 326,624 | | \$2,939,619 | | Beach Tilling (ac) | | \$300 | 24.2 | \$7,270 | \$7,270 | | Hard Bottom Mitigation (ac) | | \$300,000 | 10.1 | \$3,035,705 | | | Subtotal | | | | \$16,074,738 | \$3,946,889 | | Contingency | | 15% | | \$2,411,211 | \$592,033 | | Subtotal Contract Cost | | | | \$18,485,949 | \$4,538,922 | | Nourishment | | | | | | | E&D+S&A | | 10% | ν- | \$1,848,595 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | 1 | | \$907,784 | | Total Construction Cost | | | | \$20,334,544 | \$5,446,707 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | Item | | | | Renourishment at Indicated Year | t Indicated Year | | | | | | 2002 | 2011 | | Construction Cost | | | | \$20,334,544 | \$5,446,707 | | Interest During Construction | | | | \$103,007 | \$0 | | Total Investment Cost | | | | \$20,437,551 | \$5,446,707 | | Present Worth of Each Construction | | | | \$20,437,551 | \$3,189,882 | | Total Present Worth | | | | \$23,627,434 | 7,434 | | Average Annual Cost | \$2,202,676 | |---------------------
-------------| | Interest Rate | 6.125% | | | | P:\Broward\5360\6 Federal Design Document Revisions\tengineering_Appx_A\Sub-Appendx\A\3-F.L\\A\3-8-to-A\3-10-optimized interval-50\feet.xis]\tengins\t 1/18/2002 11:01 AM Estimate of Contract and Construction Costs Ft Lauderdale 50' Added Shoreline Width (ft) to R-74 Renourishment Interval: 10 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | it Indicated Year 2012 | |------------------------------------|----------------|-------------------------------------|-----------|--------------------------------------|------------------------| | Mobilization | | \$1,000,000 | 1 | | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 1,355,750 | \$12,201,749 | | | | 10 | \$9.00 | 307,737 | | \$2,769,633 | | Beach Tilling (ac) | | \$300 | 24.2 | \$7,270 | \$7,270 | | Hard Bottom Mitigation (ac) | | \$300,000 | 10.4 | \$3,105,557 | | | Subtotal | | | | \$16,314,576 | \$3,776,903 | | Contingency | | 15% | | \$2,447,186 | \$566,535 | | Subtotal Contract Cost | | | | \$18,761,763 | \$4,343,438 | | Nourishment | | | | | | | E&D+S&A | | 10% | Τ | \$1,876,176 | | | 1st Renourishment | | | | | * | | E&D+S&A | | 20% | - | | \$868,688 | | Total Construction Cost | | | | \$20,637,939 | \$5,212,126 | | | | | | | | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | mv4 | | | | Renourishment at Indicated Year | t Indicated Year | | | | | | 2002 | 2012 | | Construction Cost | | | | \$20,637,939 | \$5,212,126 | | Interest During Construction | | | | \$104,544 | 0\$ | | Total Investment Cost | | | | \$20,742,483 | \$5,212,126 | | Present Worth of Each Construction | - | | | \$20,742,483 | \$2,876,324 | | Total Present Worth | | | | \$23,618,808 | 8,808 | | Average Annual Cost | \$2,201,872 | |---------------------|-------------| | Interest Rate | 6.125% | | | | P:\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-3-FLL\A-3-8-\to-A-3-10-optimized interval-50\feet.xis\10 yrs 1/18/2002 11:01 AM Estimate of Contract and Construction Costs Ft Lauderdale 50' Added Shoreline Width (ft) to R-74 Renourishment Interval: 11 yrs Project Life: 18 years | Item | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2013 | |--|----------------|-------------------------------------|-----------|--------------------------------------|---------------------------| | Mobilization | | \$1,000,000 | _ | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 1,374,637 | \$12,371,736 | | | | 1 | \$9.00 | 288,850 | | \$2,599,646 | | Beach Tilling (ac) | | \$300 | 24.2 | \$7,270 | \$7,270 | | Hard Bottom Mitigation (ac) | | \$300,000 | 10.6 | \$3,181,335 | | | Subtotal | | | | \$16,560,341 | \$3,606,917 | | Contingency | | 15% | | \$2,484,051 | \$541,038 | | Subtotal Contract Cost | | | | \$19,044,392 | \$4,147,954 | | Nourishment | | | | | | | E&D+S&A | | 10% | _ | \$1,904,439 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | - | | \$829,591 | | Total Construction Cost | | | | \$20,948,831 | \$4,977,545 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | The state of s | | : | | Renourishment at Indicated Year | at Indicated Year | | | | | | 2002 | 2013 | | Construction Cost | | | | \$20,948,831 | \$4,977,545 | | Interest During Construction | | | | \$106,119 | 0\$ | | Total Investment Cost | | | | \$21,054,951 | \$4,977,545 | | Present Worth of Each Construction | | - | • | \$21,054,951 | \$2,588,335 | | Total Present Worth | | | | \$23,643,285 | 13,285 | | ı | | | |-------------|-------------|---------------------| | . ol | 6.125% | Interest Rate | | ₹1 | \$2,204,154 | Average Annual Cost | P:Broward\S35056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-3-FLL\\A-3-8-\to-A-3-10-optimized interval-50iest.xls\11 yrs 1/18/2002 11:01 AM ## **SUB-APPENDIX A-4** ## DETAILED COST ESTIMATES FOR EVALUATION OF THE PROJECT LENGTH OF THE MODIFICATION TO THE FEDERAL PROJECT # Sub-Apendix A-4 # Modification to the Federal Project Project Length Summary | Baseline
Extension | South
Project | Nourishment | Annualized | |-----------------------|------------------|----------------|-------------| | (ft) | Limit | Interval (yrs) | Costs | | 25 | R-74 | 10 | \$1,575,000 | | 25 | R-74 | 11 | \$1,574,000 | | 25 | R-74 | 12 | \$1,574,000 | | 25 | R-79 | 11 | \$2,038,000 | | 25 | R-79 | 12 | \$2,037,000 | | 25 | R-79 | 13 | \$2,039,000 | | 25 | R-84 | 11 | \$2,232,000 | | 25 | R-84 | 12 | \$2,231,000 | | 25 | R-84 | 13 | \$2,231,000 | Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-74 Renourishment Interval: 10 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2012 | |------------------------------------|----------------|-------------------------------------|-------------|--------------------------------------|---------------------------| | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 901,893 | \$8,117,037 | | | | 10 | \$9.00 | 307,737 | | \$2,769,633 | | Beach Tilling (ac) | | \$300 | 12.1 | \$3,635 | \$3,635 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.4 | \$1,909,409 | | | Subtotal | | | | \$11,030,081 | \$3,773,268 | | Contingency | | 15% | | \$1,654,512 | \$565,990 | | Subtotal Contract Cost | | | | \$12,684,593 | \$4,339,258 | | Nourishment | | | | | | | E&D+S&A | | 10% | | \$1,268,459 | | | 1st Renourishment | | | | | - | | E&D+S&A | | 20% | _ | | \$867,852 | | Total Construction Cost | | | | \$13,953,053 | \$5,207,109 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | Item | | | | Renourishment at Indicated Year | t Indicated Year | | Construction Cost | | | | 413 953 053 | \$5 207 109 | | Interest During Construction | | | | \$70,332 | 0\$ | | | | \$ | | | | | Total Investment Cost | | | | \$14,023,384
 \$5,207,109 | | Present Worth of Each Construction | | | | \$14,023,384 | \$2,873,556 | | Total Present Worth | | | | \$16,896,940 | 16,940 | | Average Annual Cost | \$1,575,223 | |---------------------|-------------| | Interest Rate | 6.125% | | | | P\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\Table-A21-optimized interval-FLL-rev.xls]10 yrs 1/18/2002 1:18 PM Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-74 Renourishment Interval: 11 yrs Project Life: 18 years | Mobilization \$1,000,000 1 \$ Reach 3 Beach Fill (cy) 0 \$9.00 320,780 \$ Beach Tilling (ac) \$300 12.1 \$ Hard Bottom Mitigation (ac) \$300,000 6.5 \$ Hard Bottom Mitigation (ac) \$300,000 6.5 \$ Contingency \$300,000 6.5 \$ Subtotal 15% \$ \$ Nourishment E&D+S&A 1 \$ 1 st Renourishment E&D+S&A 1 \$ Total Construction Cost Total Construction Cost \$ Interest During Construction Summary-Investment and Annual Costs \$ Total Investment Cost Total Investment Cost \$ Worth of Each Construction \$ | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2013 | |--|---|----------------|-----------------|----------|--------------------------------------|---------------------------| | (cy) 0 \$9.00 920,780 11 \$9.00 288,850 \$300 (ac) \$300,000 6.5 tion (a | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | tion (ac) \$300 288,850 \$300 12.1 \$300,000 6.5 lbtotal 15% | | 0 | \$9.00 | 920,780 | \$8,287,023 | | | \$300 12.1 \$300,000 6.5 Ibtotal 15% Contract Cost struction Cost Summary-Investment and Annual Costs tem struction struction struction struction struction | | 1 | \$9.00 | 288,850 | | \$2,599,646 | | tion (ac) \$300,000 6.5 Intotal 15% Contract Cost Summary-Investment and Annual Costs term Summary-Investment and Annual Costs struction struction sach Construction | Beach Tilling (ac) | | \$300 | 12.1 | \$3,635 | \$3,635 | | Summary-Investment and Annual Costs struction struction sach Construction 15% 10% 1 20% 20% | Hard Bottom Mitigation (ac) | | \$300,000 | 6.5 | \$1,953,293 | | | Sontract Cost 10% 1 20% 1 struction Cost Summary-Investment and Annual Costs tem struction struction struction set | Subtotal | | | | \$11,243,951 | \$3,603,282 | | Sontract Cost 10% 1 struction Cost Summary-Investment and Annual Costs tem struction struction set | Contingency | | 15% | | \$1,686,593 | \$540,492 | | struction Cost Summary-Investment and Annual Costs tem struction sach Construction | ototal | | | | \$12,930,544 | \$4,143,774 | | struction Summary-Investment and Annual Costs tem struction sach Construction | Nourishment | | | | | | | struction Cost Summary-Investment and Annual Costs tem struction sach Construction | E&D+S&A | | 10% | ~ | \$1,293,054 | | | struction Cost Summary-Investment and Annual Costs tem struction sach Construction | 1st Renourishment | | ò | • | | 1
1
0
0 | | Summary-Investment and Annual Costs | E&D+V&A | | Z0% | _ | | \$020,733 | | Summary-Investment and Annual Costs | Total Construction Cost | | | | \$14,223,598 | \$4,972,528 | | | | Summary-Invest | nent and Annual | Costs | | | | | Item | | | | Renourishment at Indicated Year | at Indicated Year | | | + 0 0 0 10 11 11 11 11 11 11 11 11 11 11 | | | | 411 222 500 | \$4 070 F28 | | | Construction Cost
Interest During Construction | | | | \$71,696 | \$4,912,320 | | | | | | | | | | | Total Investment Cost | | | | \$14,295,294 | \$4,972,528 | | | Present Worth of Each Construction | | | | \$14,295,294 | \$2,585,726 | | Total Present Worth | Total Present Worth | | | | \$16,881,020 | 31,020 | | Average Annual Cost | \$1,573,739 | |---------------------|-------------| | Interest Rate | 6.125% | | | | P:Browardt535056 Federal Design Document Revisions/Engineering_Appx_A\[Table-A21-optimized interval-FLL-rev.xls]11 yrs 1/18/2002 1:18 PM Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-74 Renourishment Interval: 12 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2014 | |------------------------------------|----------------|-------------------------------------|----------|--------------------------------------|---------------------------| | Mobilization | | \$1,000,000 | _ | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 939,668 | \$8,457,009 | | | | 12 | \$9.00 | 269,962 | | \$2,429,660 | | Beach Tilling (ac) | | \$300 | 12.1 | \$3,635 | \$3,635 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.7 | \$1,997,177 | | | Subtotal | | | | \$11,457,821 | \$3,433,295 | | Contingency | | 15% | | \$1,718,673 | \$514,994 | | Subtotal Contract Cost | | | | \$13,176,494 | \$3,948,290 | | Nourishment | | | | | | | E&D+S&A | | 10% | _ | \$1,317,649 | | | 1st Renourishment | | | | | · | | E&D+S&A | | 20% | _ | ÷ | \$789,658 | | Total Construction Cost | | | | \$14,494,144 | \$4,737,948 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | Item | | | | Renourishment at Indicated Year | at Indicated Year | | | | | | 2002 | 2014 | | Construction Cost | | | | \$14,494,144 | \$4,737,948 | | Interest During Construction | | | | \$73,059 | \$0 | | Total Investment Cost | | | | \$14,567,203 | \$4,737,948 | | Present Worth of Each Construction | | | | \$14,567,203 | \$2,321,549 | | Total Present Worth | - | | | \$16,888,752 | 88,752 | | \$1,574,460 | 6.125% | | |---------------------|---------------|--| | Average Annual Cost | Interest Rate | | P./Broward\535056 Federal Design LocumenI Revisions\Engineering_Appx_A\[Table-A21-optimized interval-FLL-rev.Xls]12 yrs 1/18/2002 1:18 PM # Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-79 Renourishment Interval: 11 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2013 | |---|-------------------------------------|-----------------------|-----------|--------------------------------------|---------------------------| | Mobilization
Reach 3 Beach Fill (cy) | 0 | \$1,000,000
\$9.00 | 1,074,451 | \$1,000,000
\$9,670,062 | \$1,000,000 | | | 1 | \$9.00 | 328,330 | | \$2,954,968 | | Beach Tilling (ac) | | \$300 | 15.2 | \$4,558 | \$4,558 | | Hard Bottom Mitigation (ac) | | \$300,000 | 14.3 | \$4,284,178 | | | Subtotal | | | | \$14,958,798 | \$3,959,527 | | Contingency | | 15% | | \$2,243,820 | \$593,929 | | Subtotal Contract Cost | | | | \$17,202,618 | \$4,553,456 | | Nourishment | | | | | | | E&D+S&A | | 10% | ← | \$1,720,262 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | _ | | \$910,691 | | Total Construction Cost | | | | \$18,922,880 | \$5,464,147 | | | | | | | | | | Summary-Investment and Annual Costs | nent and Annual | Costs | | | | Item | |
 | Renourishment at Indicated Year | ut Indicated Year | | | | | | 2002 | 2013 | | Construction Cost | | | | \$18,922,880 | \$5,464,147 | | Interest During Construction | | | | \$95,383 | \$0 | | Total Investment Cost | | | | \$19,018,262 | \$5,464,147 | | Present Worth of Each Construction | | | | \$19,018,262 | \$2,841,369 | | Total Present Worth | | | | \$21,859,631 | 9,631 | | Average Annual Cost | \$2,037,872 | |---------------------|-------------| | Interest Rate | 6.125% | | | | P:\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-4-Length-Mod\{A-4-5-to-A-4-7-optimized interval-R79.xls]11 yrs 1/18/2002 1:19 PM Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-79 Renounishment Interval: 12 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2014 | |------------------------------------|----------------|-------------------------------------|-----------|--------------------------------------|---------------------------| | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 1,093,339 | \$9,840,048 | | | | 12 | \$9.00 | 309,442 | | \$2,784,982 | | Beach Tilling (ac) | | \$300 | 15.2 | \$4,558 | \$4,558 | | Hard Bottom Mitigation (ac) | | \$300,000 | 14.4 | \$4,328,062 | | | Subtotal | | | | \$15,172,668 | \$3,789,540 | | Contingency | | 15% | | \$2,275,900 | \$568,431 | | Subtotal Contract Cost | | | | \$17,448,568 | \$4,357,972 | | Nourishment | | 10% | ₹- | \$1 744.857 | | | 1st Renourishment | |)
 | | | | | E&D+S&A | | 20% | - | | \$871,594 | | Total Construction Cost | | | | \$19,193,425 | \$5,229,566 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment at Indicated Year 2002 | at Indicated Year
2014 | | Construction Cost | | | | \$19,193,425 | \$5,229,566 | | Interest During Construction | | | | \$96,746 | \$0 | | Total Investment Cost | | | | \$19,290,172 | \$5,229,566 | | Present Worth of Each Construction | | | | \$19,290,172 | \$2,562,437 | | Total Present Worth | | : | | \$21,852,609 | 52,609 | | Interest Rate 6.125% | Average Annual Cost | \$2,037,217 | |----------------------|---------------------|-------------| | | Interest Rate | 6.125% | P.IBrowardt535056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-4-Length-Mod\(A-4-5-to-A-4-7-optimized interval-R79.xls)12 yrs 1/18/2002 1:19 PM Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-79 Renourishment Interval: 13 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year
2002 2015 | at Indicated Year
2015 | |------------------------------------|----------------|-------------------------------------|-----------|--|---------------------------| | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 1,112,226 | \$10,010,034 | | | | 13 | \$9.00 | 290,555 | | \$2,614,996 | | Beach Tilling (ac) | | \$300 | 15.2 | \$4,558 | \$4,558 | | Hard Bottom Mitigation (ac) | | \$300,000 | 14.6 | \$4,371,946 | | | Subtotal | | | • | \$15,386,538 | \$3,619,554 | | Contingency | | 15% | | \$2,307,981 | \$542,933 | | Subtotal Contract Cost | | | | \$17,694,519 | \$4,162,487 | | Nourishment | | | | | | | E&D+S&A | | 10% | _ | \$1,769,452 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | 7 | | \$832,497 | | Total Construction Cost | | | | \$19,463,971 | \$4,994,985 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment at Indicated Year 2002 | at Indicated Year | | Construction Cost | | | | \$19,463,971 | \$4,994,985 | | Interest During Construction | | | | \$98,110 | \$0 | | Total Investment Cost | | | | \$19,562,081 | \$4,994,985 | | Present Worth of Each Construction | | | | \$19,562,081 | \$2,306,238 | | Total Present Worth | | | | \$21,868,318 | 18,318 | | Average Annual Cost | \$2,038,682 | |---------------------|-------------| | Interest Rate | 6.125% | | | | P:\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-4-Length-Mod\{A-4-5-to-A-4-7-optimized interval-R79.xis\f\3 yrs 1/18/2002 1:19 PM # Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-84 Renourishment Interval: 11 yrs Project Life: 18 years | Item | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | t Indicated Year
2013 | |------------------------------------|-------------------------------------|-----------------|-----------|--------------------------------------|--------------------------| | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 1,207,079 | \$10,863,707 | | | | - | \$9.00 | 362,570 | | \$3,263,132 | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,350 | \$5,350 | | Hard Bottom Mitigation (ac) | | \$300,000 | 15.2 | \$4,556,664 | | | Subtotal | | | | \$16,425,721 | \$4,268,483 | | Contingency | | 15% | | \$2,463,858 | \$640,272 | | Subtotal Contract Cost | | | | \$18,889,579 | \$4,908,755 | | Nourishment | | | | | | | E&D+S&A | | 10% | ~ | \$1,888,958 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | 7 | | \$981,751 | | Total Construction Cost | | | | \$20,778,537 | \$5,890,506 | | | Summary-Investment and Annual Costs | nent and Annual | Costs | | : | | Item | | | | Renourishment at Indicated Year | t Indicated Year | | Construction Cost | | | | \$20.778.537 | \$5.890.506 | | Interest During Construction | | | | \$105,257 | 0\$ | | Total Investment Cost | | | | \$20,883,794 | \$5,890,506 | | Present Worth of Each Construction | | | | \$20,883,794 | \$3,063,077 | | Total Present Worth | | | | \$23,946,871 | 6,871 | | Average Annual Cost | NΪ | |---------------------|--------| | Interest Rate | 6.125% | P\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-4-Length-Mod\[A-4-8-to-A-4-10-optimized interval-R84.xls]/1 yrs 1/18/2002 1:20 PM Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-84 Renourishment Interval: 12 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year
2002 | it Indicated Year
2014 | |------------------------------------|----------------|-------------------------------------|-----------|---|---------------------------| | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 1,226,019 | \$11,034,170 | | | | 12 | \$9.00 | 343,630 | - | \$3,092,670 | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,350 | \$5,350 | | Hard Bottom Mitigation (ac) | | \$300,000 | 15.3 | \$4,600,548 | | | Subtotal | | | | \$16,640,068 | \$4,098,020 | | Contingency | | 15% | | \$2,496,010 | \$614,703 | | Subtotal Contract Cost | | | | \$19,136,078 | \$4,712,723 | | Nourishment | | | | | | | E&D+S&A | | 10% | ~ | \$1,913,608 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | _ | - 1. | \$942,545 | | Total Construction Cost | | | | \$21,049,686 | \$5,655,267 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment at Indicated Year 2002 | it Indicated Year
2014 | | Construction Cost | | | | \$21,049,686 | \$5,655,267 | | Interest During Construction | | | | \$106,630 | \$0 | | Total Investment Cost | | | | \$21,156,316 | \$5,655,267 | | Present Worth of Each Construction | | | | \$21,156,316 | \$2,771,027 | | Total Present Worth | | | | \$23,927,343 | 7,343 | | \$2,230,635 | 6.125% | | |---------------------|---------------|--| | Average Annual Cost | Interest Rate | | P\Broward\535056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-4-Length-Mod\A-4-8-to-A-4-10-optimized interval-R84.xls|12 yrs 1/18/2002 1:20 PM # Estimate of Contract and Construction Costs Ft Lauderdale 25' Added Shoreline Width (ft) to R-84 Renounishment Interval: 13 yrs Project Life: 18 years | ltem | Project Year | Unit Cost | Quantity | Renourishment a
2002 | Renourishment at Indicated Year
2002 | |------------------------------------|----------------|-------------------------------------|-----------|-------------------------|---| | Mobilization | | \$1,000,000 | - | \$1,000,000 | \$1,000,000 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 1,244,959 | \$11,204,633 | | | | 13 | \$9.00 | 324,690 | | \$2,922,207 | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,350 | \$5,350 | | Hard Bottom Mitigation (ac) | | \$300,000 | 15.5 | \$4,644,432 | | | Subtotal | | | | \$16,854,415 | \$3,927,557 | | Contingency | | 15% | | \$2,528,162 | \$589,134 | | Subtotal Contract Cost | | | | \$19,382,577 | \$4,516,690 | | Nourishment | | | | | | | E&D+S&A | | 10% | ~ | \$1,938,258 | | | 1st Renourishment | | | | | | | E&D+S&A | | 20% | - | | \$903,338 | | Total Construction Cost | | | | \$21,320,835 | \$5,420,029 | | | Summary-Invest | Summary-Investment and Annual Costs | Costs | | | | Item | | | | Renourishment a | Renourishment at Indicated Year | | Construction Cost | | | | \$21,320,835 | \$5,420,029 | | Interest During Construction | | | | \$108,004 | \$0 | | Total Investment Cost | | | | \$21,428,838 | \$5,420,029 | | Present Worth of Each Construction | | | | \$21,428,838 | \$2,502,485 | | Total Present Worth | | | | \$23,93 | \$23,931,323 | | | | | | | | | 6.125% | Interest Rate | |-------------|---------------------| | \$2,231,006 | Average Annual Cost | PABrowardt535056 Federal Design Document Revisions\Engineering_Appx_A\Sub-Appendix-A-4-Length-Mod\[A-4-8-to-A-4-10-optimized interval-R84.xls]13 yrs 1/18/2002 1:20 PM # **SUB-APPENDIX A-5** DETAILED COST ESTIMATES USED FOR DETERMINING THE OPTIMAL RENOURISHMENT INTERVAL OF THE
IMPLEMENTATION OF THE FEDERAL PROJECT # Sub-Apendix A-5 # Implementation of the Reevaluated Federal Project Interval Optimization Summary # Segment II Pompano Beach to Fort Lauderdale | Nourishment Interval
(years) | Project Costs | |---------------------------------|--------------------| | 9 | \$2,356,000 | | 10 | \$2,355,000 | | 11 | \$2,358,000 | | 12 | \$2,364,000 | | 13 | \$2,373,000 | | 14 | \$2,385,000 | | 15 | \$2,400,000 | Estimate of Contract and Construction Costs Segment II 100'/25' Added Shoreline Width (ft) Renourishment Interval: 9 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment a | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|----------|---------------------------|--------------------------------------| | Mobilization | | \$1,100,000 | 1 | \$1,100,000 | \$1,100,000 | | Reach 2 Beach Fill (cy) | 0 | \$8.50 | 342,840 | \$2,914,143 | | | | 6 | \$8.50 | 225,703 | | \$1,918,477 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 883,006 | \$7,947,051 | | | | σ | \$9.00 | 326,624 | | \$2,939,619 | | Beach Tilling (ac) | | \$300 | 29.9 | \$8,966 | 996'8\$ | | Hard Bottom Mitigation (ac) | | \$300,000 | 12.4 | \$3,713,277 | | | Subtotal | | | | \$15,683,437 | \$5,967,062 | | Contingency | | 15% | | \$2,352,516 | \$895,059 | | Subtotal Contract Cost | | | | \$18,035,953 | \$6,862,121 | | Geotechnical Investigations | | 190,000 | | \$190,000 | \$190,000 | | Secure Easements | | 250,000 | _ | \$250,000 | | | Environmental Monitoring | | 275,079 | _ | \$275,079 | \$275,079 | | E&D+S&A | | 1,342,000 | - | \$1,342,000 | \$1,342,000 | | Total Construction Cost | | | | \$20,093,032 | \$8,669,200 | | | Summary-Inves | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment a 2002 | Renourishment at Indicated Year 2002 | | Construction Cost
Interest During Construction | | | | \$20,093,032
\$101,784 | \$8,669,200
\$0 | | Total Investment Cost | | | | \$20,194,816 | \$8,669,200 | | Present Worth of Each Construction | | | | \$20,194,816 | \$5,077,146 | | Total Present Worth | | | | \$25,271,962 | 71,962 | | | Average Annual Cost | \$2,355,988 | |---|---------------------|-------------| | | Interest Rate | 6.125% | | • | | | Estimate of Contract and Construction Costs Segment II 100/25' Added Shoreline Width (ft) Renourishment Interval: 10 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment
2002 | Renourishment at Indicated Year
2002 2012 | |------------------------------------|---------------|-------------------------------------|----------|-----------------------|--| | Mobilization | | \$1,100,000 | | \$1,100,000 | \$1,100,000 | | Reach 2 Beach Fill (cy) | 0 | \$8.50 | 356,088 | \$3,026,746 | | | | 9 | \$8.50 | 212,456 | | \$1,805,873 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 901,893 | \$8,117,037 | - | | | 10 | \$9.00 | 307,737 | | \$2,769,633 | | Beach Tilling (ac) | | \$300 | 29.9 | \$8,966 | \$8,966 | | Hard Bottom Mitigation (ac) | | \$300,000 | 12.8 | \$3,829,062 | | | Subtotal | | | | \$16,081,811 | \$5,684,472 | | Contingency | | 15% | | \$2,412,272 | \$852,671 | | Subtotal Contract Cost | | | | \$18,494,083 | \$6,537,143 | | Geotechnical Investigations | | 190,000 | <u></u> | \$190,000 | \$190,000 | | Secure Easements | | 250,000 | _ | \$250,000 | | | Environmental Monitoring | | 275,079 | _ | \$275,079 | \$275,079 | | E&D+S&A | | 1,342,000 | - | \$1,342,000 | \$1,342,000 | | Total Construction Cost | | | | \$20,551,162 | \$8,344,222 | | | Summary-Inves | Summary-Investment and Annual Costs | al Costs | | | | lfem | | | | Renourishment | Renourishment at Indicated Year | | | | | | 2002 | 2012 | | Construction Cost | | | | \$20,551,162 | \$8,344,222 | | Interest During Construction | | | | \$104,105 | \$0 | | Total Investment Cost | | | | \$20,655,267 | \$8,344,222 | | Present Worth of Each Construction | | | | \$20,655,267 | \$4,604,779 | | Total Present Worth | | | | \$25,26 | \$25,260,046 | | Interest Rate 6.125% | Average Annual Cost | \$2,354,877 | |----------------------|---------------------|-------------| | | | 6.125% | Estimate of Contract and Construction Costs Segment II 100/25' Added Shoreline Width (ft) Renourishment Interval: 11 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment a
2002 | Renourishment at Indicated Year 2002 | |------------------------------------|----------------|-------------------------------------|----------|--------------------------------------|--------------------------------------| | Mobilization | | \$1,100,000 | - | \$1,100,000 | \$1,100,000 | | Reach 2 Beach Fill (cy) | 0 | \$8.50 | 369,335 | \$3,139,349 | | | - | - - | \$8.50 | 199,208 | | \$1,693,270 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 920,780 | \$8,287,023 | | | | - | \$9.00 | 288,850 | | \$2,599,646 | | Beach Tilling (ac) | | \$300 | 29.9 | \$8,966 | \$8,966 | | Hard Bottom Mitigation (ac) | | \$300,000 | 13.2 | \$3,949,445 | | | Subtotal | | | | \$16,484,784 | \$5,401,883 | | Contingency | | 15% | | \$2,472,718 | \$810,282 | | Subtotal Contract Cost | | | | \$18,957,502 | \$6,212,165 | | Geotechnical Investigations | | 190,000 | _ | \$190,000 | \$190,000 | | Secure Easements | | 250,000 | _ | \$250,000 | _ | | Environmental Monitoring | | 275,079 | _ | \$275,079 | \$275,079 | | E&D+S&A | | 1,342,000 | - | \$1,342,000 | \$1,342,000 | | Total Construction Cost | | | | \$21,014,581 | \$8,019,244 | | | Summary-Inves | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment at Indicated Year 2002 | at Indicated Year
2013 | | Construction Cost | | | | \$21,014,581 | \$8,019,244 | | Interest During Construction | | | | \$106,452 | 0\$ | | Total Investment Cost | | | | \$21,121,033 | \$8,019,244 | | Present Worth of Each Construction | | | | \$21,121,033 | \$4,170,026 | | Total Present Worth | | | | \$25,291,059 | 1,059 | | Average Annual Cost | \$2,357,768 | |---------------------|-------------| | Interest Rate | 6.125% | | | | Estimate of Contract and Construction Costs Segment II 100/25' Added Shoreline Width (ft) Renourishment Interval: 12 yrs Project Life: 18 yrs | Item | Project Year | Unit Cost | Quantity | Renourishment | Renourishment at Indicated Year | |---|---------------|-------------------------------------|----------|---------------------------|---| | | , | | , | 2002 | 2014 | | Mobilization | | \$1,100,000 | τ- | \$1,100,000 | \$1,100,000 | | Reach 2 Beach Fill (cy) | 0 | \$8.50 | 382,583 | \$3,251,953 | | | | 12 | \$8.50 | 185,961 | | \$1,580,667 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 939,668 | \$8,457,009 | | | | 12 | \$9.00 | 269,962 | | \$2,429,660 | | Beach Tilling (ac) | | \$300 | 29.9 | \$8,966 | \$8,966 | | Hard Bottom Mitigation (ac) | | \$300,000 | 13.6 | \$4,069,829 | | | Subtotal | | | | \$16,887,757 | \$5,119,294 | | Contingency | | 15% | | \$2,533,164 | \$767,894 | | Subtotal Contract Cost | | | | \$19,420,921 | \$5,887,188 | | Geotechnical Investigations | | 190,000 | - | \$190,000 | \$190,000 | | Secure Easements | | 250,000 | τ- | \$250,000 | | | Environmental Monitoring | | 275,079 | ۲ | \$275,079 | \$275,079 | | E&D+S&A | | 1,342,000 | _ | \$1,342,000 | \$1,342,000 | | Total Construction Cost | | | | \$21,478,000 | \$7,694,267 | | | Summary-Inves | Summary-Investment and Annual Costs | l Costs | | | | ltem | | | | Renourishment a
2002 | Renourishment at Indicated Year 2002 2014 | | Construction Cost
Interest During Construction | | | | \$21,478,000
\$108,800 | \$7,694,267
\$0 | | Total Investment Cost | | | | \$21,586,800 | \$7,694,267 | | Present Worth of Each Construction | | | | \$21,586,800 | \$3,770,117 | | Total Present Worth | | | | \$25,356,917 | 6,917 | | Average Annual Cost | \$2,363,908 | |---------------------|-------------| | Interest Rate | 6.125% | | | | Estimate of Contract and Construction Costs Segment II 100/25' Added Shoreline Width (ft) Renourishment Interval: 13 yrs Project Life: 18 yrs | Item | Project Year | Unit Cost | Quantity | Renourishment | Renourishment at Indicated Year | |------------------------------------|---------------|-------------------------------------|----------|-------------------------|--------------------------------------| | | | 1 | | 7007 | 2015 | | Mobilization | , | \$1,100,000 | ~ | \$1,100,000 | \$1,100,000 | | Reach 2 Beach Fill (cy) | 0 | \$8.50 | 395,830 | \$3,364,556 | | | | 13 | \$8.50 | 172,713 | | \$1,468,064 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 958,555 | \$8,626,995 | | | | 13 | \$9.00 | 251,075 | | \$2,259,674 | | Beach Tilling (ac) | | \$300 | 29.9 | \$8,966 | \$8,966 | | Hard Bottom Mitigation (ac) | | \$300,000 | 14.0 | \$4,190,213 | | | Subtotal | | | | \$17,290,731 | \$4,836,704 | | Contingency | | 15% | | \$2,593,610 | \$725,506 | | Subtotal Contract Cost | | | | \$19,884,340 | \$5,562,210 | | Geotechnical Investigations | | 190,000 | _ | \$190,000 | \$190,000 | | Secure Easements | | 250,000 | - | \$250,000 | | | Environmental Monitoring | | 275,079 | _ | \$275,079 | \$275,079 | | E&D+S&A | | 1,342,000 | - | \$1,342,000 | \$1,342,000 | | Total Construction Cost | | | | \$21,941,419 | \$7,369,289 | | | Summary-Inves | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment a
2002 | Renourishment at Indicated Year 2002 | | Construction Cost | | | | \$21,941,419 | \$7,369,289 | | Interest During Construction | | | | \$111,147 | \$0 | | Total Investment Cost | | | | \$22,052,566 | \$7,369,289 | | Present Worth of Each Construction | | | | \$22,052,566 | \$3,402,479 | | Total Present Worth | | | | \$25,45 | \$25,455,045 | | Average Annual Cost | \$2,373,056 | |---------------------|-------------| | Interest Rate | 6.125% | | | | Estimate of
Contract and Construction Costs Segment II 100/25' Added Shoreline Width (ft) Renourishment Interval: 14 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment a | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|-------------|---------------------------|--------------------------------------| | Mobilization | | \$1,100,000 | | \$1,100,000 | \$1,100,000 | | Reach 2 Beach Fill (cy) | 0 | \$8.50 | 409,078 | \$3,477,159 | | | | 4 | \$8.50 | 159,466 | | \$1,355,461 | | Reach 3 Beach Fill (cy) | 0 | \$9.00 | 977,442 | \$8,796,982 | - | | | 14 | \$9.00 | 232,188 | | \$2,089,688 | | Beach Tilling (ac) | | \$300 | 29.9 | \$8,966 | \$8,966 | | Hard Bottom Mitigation (ac) | | \$300,000 | 14.4 | \$4,310,597 | | | Subtotal | | | | \$17,693,704 | \$4,554,115 | | Contingency | | 15% | | \$2,654,056 | \$683,117 | | Subtotal Contract Cost | | | | \$20,347,759 | \$5,237,232 | |
 Geotechnical Investigations | | 190,000 | ~ | \$190,000 | \$190,000 | | Secure Easements | | 250,000 | . | \$250,000 | | | Environmental Monitoring | | 275,079 | - | \$275,079 | \$275,079 | | E&D+S&A | | 1,342,000 | 1 | \$1,342,000 | \$1,342,000 | | Total Construction Cost | | | | \$22,404,838 | \$7,044,311 | | | Summary-Inves | Summary-Investment and Annual Costs | l Costs | | | | l te m | | | | Renourishment a | Renourishment at Indicated Year 2002 | | Construction Cost
Interest During Construction | | | | \$22,404,838
\$113,495 | \$7,044,311
\$0 | | Total Investment Cost | | | | \$22,518,333 | \$7,044,311 | | Present Worth of Each Construction | • | | | \$22,518,333 | \$3,064,719 | | Total Present Worth | | | | \$25,58 | \$25,583,052 | | Average Annual Cost | \$2,384,989 | |---------------------|-------------| | Interest Rate | 6.125% | | | | Estimate of Contract and Construction Costs Segment II 100/25' Added Shoreline Width (ft) Renourishment Interval: 15 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment at Indicated Year 2002 | at Indicated Year
2017 | |------------------------------------|---------------|-------------------------------------|----------|--------------------------------------|--------------------------------------| | Mobilization | | \$1,100,000 | | \$1,100,000 | \$1,100,000 | | Reach 2 Beach Fill (cy) | 0 | \$8.50 | 422,325 | \$3,589,762 | | | | 15 | \$8.50 | 146,219 | | \$1,242,857 | | Reach 3 Beach Fili (cy) | 0 | \$9.00 | 996,330 | \$8,966,968 | | | | 15 | \$9.00 | 213,300 | | \$1,919,702 | | Beach Tilling (ac) | | \$300 | 29.9 | \$8,966 | \$8,966 | | Hard Bottom Mitigation (ac) | | \$300,000 | 14.8 | \$4,430,981 | | | Subtotal | | | | \$18,096,677 | \$4,271,526 | | Contingency | | 15% | | \$2,714,502 | \$640,729 | | Subtotal Contract Cost | | | | \$20,811,178 | \$4,912,254 | | Geotechnical Investigations | | 190,000 | <u>_</u> | \$190,000 | \$190,000 | | Secure Easements | | 250,000 | _ | \$250,000 | | | Environmental Monitoring | | 275,079 | _ | \$275,079 | \$275,079 | | E&D+S&A | | 1,342,000 | - | \$1,342,000 | \$1,342,000 | | Total Construction Cost | | | | \$22,868,257 | \$6,719,333 | | | Summary-Inves | Summary-Investment and Annual Costs | Costs | | | | ltem | | | | Renourishment a 2002 | Renourishment at Indicated Year 2002 | | Construction Cost | | | | \$22,868,257 | \$6,719,333 | | Interest During Construction | | | | \$115,842 | \$0 | | Total Investment Cost | | | | \$22,984,100 | \$6,719,333 | | Present Worth of Each Construction | | | | \$22,984,100 | \$2,754,613 | | Total Present Worth | | | | \$25,73 | \$25,738,713 | | Average Annual Cost | \$2,399,501 | |---------------------|-------------| | Interest Rate | 6.125% | | | | # Implementation of the Reevaluated Federal Project Interval Optimization Summary # Pompano Beach to Lauderdale-by-the-Sea | Nourishment Interval (years) | Project Costs | |------------------------------|------------------| | 9 | \$967,000 | | 10 | \$967,000 | | 11 | \$969,000 | | 12 | \$972,000 | | 13 | \$976,000 | | 14 | \$981,000 | | 15 | \$988,000 | Estimate of Contract and Construction Costs Pompano Beach to Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) Renourishment Interval: 9 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment
2002 | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|--------------|----------------------------|--------------------------------------| | Mobilization
Reach 2 Beach Fill (cy) | 0 | \$1,000,000
\$8.50 | 1
342,840 | \$1,000,000
\$2,914,143 | \$1,000,000 | | | o . | \$8.50 | 225,703 | | \$1,918,477 | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,331 | \$5,331 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.1 | \$1,843,153 | | | Subtotal | | | | \$5,762,627 | \$2,923,808 | | Contingency | | 15% | | \$864,394 | \$438,571 | | Subtotal Contract Cost | | | | \$6,627,021 | \$3,362,379 | | Geotecnnical Investigations | | 107,203 | - | \$107,203 | \$107,203 | | Secure Easements | | 125,000 | <u></u> | \$125,000 | - | | Environmental Monitoring | | 155,207 | _ | \$155,207 | \$155,207 | | E&D+S&A. | | 757,193 | 1 | \$757,193 | \$757,193 | | Total Construction Cost | | | | \$7,771,624 | \$4,381,982 | | | Summary-Inves | Summary-Investment and Annual Costs | l Costs | | | | ltem | | | | Renourishment 2002 | Renourishment at Indicated Year 2002 | | Construction Cost | | | | \$7,771,624 | \$4,381,982 | | Interest During Construction | | | | \$38,787 | \$0 | | Total Investment Cost | | | | \$7,810,411 | \$4,381,982 | | Present Worth of Each Construction | | | | \$7,810,411 | \$2,566,323 | | Total Present Worth | | | | \$10,3 | \$10,376,734 | | Average Annual Cost | \$967,375 | |---------------------|-----------| | Interest Rate | 6.125%. | Estimate of Contract and Construction Costs Pompano Beach to Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) Renourishment Interval: 10 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment
2002 | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|--------------|----------------------------|--------------------------------------| | Mobilization
Reach 2 Beach Fill (cv) | 0 | \$1,000,000
\$8.50 | 1
356.088 | \$1,000,000
\$3,026,746 | \$1,000,000 | | | , 0 | \$8.50 | 212,456 | | \$1,805,873 | | | | | | | | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,331 | \$5,331 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.4 | \$1,919,653 | | | Subtotal | | | | \$5,951,730 | \$2,811,205 | | Contingency | | 15% | | \$892,760 | \$421,681 | | Subtotal Contract Cost | | | | \$6,844,490 | \$3,232,885 | | Geotechnical Investigations | | 107.203 | • | \$107.203 | \$107.203 | | Secure Easements | | 125,000 | _ | \$125,000 | • | | Environmental Monitoring | | 155,207 | <u>-</u> | \$155,207 | \$155,207 | | E&D+S&A | | 757,193 | ~ | \$757,193 | \$757,193 | | Total Construction Cost | | | | \$7,989,093 | \$4,252,488 | | | Summary-Inves | Summary-Investment and Annual Costs | al Costs | | | | motl | | | | Renourishment | Renourishment at Indicated Year | | | | | | 2002 | 2012 | | Construction Cost | | | | \$7,989,093 | \$4,252,488 | | Interest During Construction | | | | \$39,873 | \$0 | | Total Investment Cost | | | | \$8,028,965 | \$4,252,488 | | Present Worth of Each Construction | | | | \$8,028,965 | \$2,346,746 | | Total Present Worth | | | | \$10,3 | \$10,375,711 | | 1 | |--------| | 6.125% | | | Estimate of Contract and Construction Costs Pompano Beach to Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) Renourishment Interval: 11 yrs Project Life: 18 yrs | Item | Project Year | Unit Cost | Quantity | Renourishment 2002 | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|--------------|----------------------------|--------------------------------------| | Mobilization
Reach 2 Beach Fill (cy) | 0 | \$1,000,000
\$8.50 | 1
369,335 | \$1,000,000
\$3,139,349 | \$1,000,000 | | | 11 | \$8.50 | 199,208 | · | \$1,693,270 | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,331 | \$5,331 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.7 | \$1,996,153 | | | Subtotal | | | | \$6,140,833 | \$2,698,602 | | Contingency | | 15% | | \$921,125 | \$404,790 | | Subtotal Contract Cost | | | | \$7,061,958 | \$3,103,392 | | Geotechnical Investigations | | 107,203 | - | \$107,203 | \$107,203 | | Secure Easements | | 125,000 | _ | \$125,000 | | | Environmental Monitoring | | 155,207 | — | \$155,207 | \$155,207 | | E&D+S&A | | 757,193 | 1 | \$757,193 | \$757,193 | | Total Construction Cost | | | | \$8,206,561 | \$4,122,995 | | | Summary-Inves | Summary-Investment and Annual Costs | ıl Costs | | | | tem | | | | Renourishment | Renourishment at Indicated Year | | | | | | 2002 | 2013 | | Construction Cost | | | | \$8,206,561 | \$4,122,995 | | Interest During Construction | | | | \$40,958 | Ş. | | Total Investment Cost | | | | \$8,247,519 | \$4,122,995 | | Present Worth of Each Construction | | | | \$8,247,519 | \$2,143,967 | | Total Present Worth | | | | \$10,38 | \$10,391,486 | | Average Annual Cost | \$968,750 | |---------------------|-----------| | Interest Rate | 6.125% | Estimate of Contract and Construction Costs Pompano Beach to Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) Renourishment Interval: 12 yrs Project Life: 18 yrs | Item | Project Year | Unit Cost | Quantity | Renourishment a | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|--------------|----------------------------|--------------------------------------| | Mobilization
Reach 2 Beach Fill (cy) | 0 |
\$1,000,000
\$8.50 | 1
382,583 | \$1,000,000
\$3,251,953 | \$1,000,000 | | <u>.</u> | 12 | \$8.50 | 185,961 | | \$1,580,667 | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,331 | \$5,331 | | Hard Bottom Mitigation (ac) | | \$300,000 | 6.9 | \$2,072,653 | | | Subtotal | | | | \$6,329,936 | \$2,585,998 | | Contingency | | 15% | | \$949,490 | \$387,900 | | Subtotal Contract Cost | | | | \$7,279,427 | \$2,973,898 | | Geotechnical Investigations | | 107,203 | , — | \$107,203 | \$107,203 | | Secure Easements | | 125,000 | _ | \$125,000 | | | Environmental Monitoring | | 155,207 | ~ | \$155,207 | \$155,207 | | E&D+S&A | | 757,193 | 7 | \$757,193 | \$757,193 | | Total Construction Cost | | | | \$8,424,030 | \$3,993,501 | | | Summary-Inves | Summary-Investment and Annual Costs | ıl Costs | | | | Item | | | | Renourishment | Renourishment at Indicated Year | | | | | | 2002 | 20:14 | | Construction Cost | | | | \$8,424,030 | \$3,993,501 | | Interest During Construction | | | | \$42,044 | \$0 | | Total Investment Cost | | | | \$8,466,073 | \$3,993,501 | | Present Worth of Each Construction | | | | \$8,466,073 | \$1,956,777 | | Total Present Worth | | | | \$10,422,851 | 22,851 | | Average Annual Cost | \$971,674 | |---------------------|-----------| | Interest Rate | 6.125% | Estimate of Contract and Construction Costs Pompano Beach to Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) Renourishment Interval: 13 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment
2002 | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|----------|-----------------------|--------------------------------------| | Mobilization
Reach 2 Reach Fill (cv) | c | \$1,000,000 | 1 | \$1,000,000 | \$1,000,000 | | | 13 | \$8.50 | 172,713 | 50,00 | \$1,468,064 | | | | | | | | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,331 | \$5,331 | | Hard Bottom Mitigation (ac) | | \$300,000 | 7.2 | \$2,149,153 | | | Subtotal | | | | \$6,519,040 | \$2,473,395 | | Contingency | | 15% | | \$977,856 | \$371,009 | | Subtotal Contract Cost | | | | \$7,496,896 | \$2,844,404 | | Geotechnical Investigations | | 107,203 | - | \$107,203 | \$107,203 | | Secure Easements | | 125,000 | _ | \$125,000 | | | Environmental Monitoring | | 155,207 | _ | \$155,207 | \$155,207 | | E&D+S&A | | 757,193 | 1 | \$757,193 | \$757,193 | | Total Construction Cost | | | | \$8,641,499 | \$3,864,007 | | | Summary-Inves | Summary-Investment and Annual Costs | l Costs | | | | ltem | | | | Renourishment 2002 | Renourishment at Indicated Year 2002 | | Construction Cost | | | | \$8,641,499 | \$3,864,007 | | Interest During Construction | | | | \$43,129 | \$0 | | Total Investment Cost | | | | \$8,684,627 | \$3,864,007 | | Present Worth of Each Construction | | | | \$8,684,627 | \$1,784,053 | | Total Present Worth | | | | \$10,4 | \$10,468,681 | | Interest Rate 6.125% | Average Annual Cost | \$975,946 | |----------------------|---------------------|-----------| | | Interest Rate | 6.125% | Estimate of Contract and Construction Costs Pompano Beach to Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) Renourishment Interval: 14 yrs Project Life: 18 yrs | ltem | Project Year | Unit Cost | Quantity | Renourishment
2002 | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|--------------|----------------------------|--------------------------------------| | Mobilization
 Reach 2 Beach Fill (cv) | 0 | \$1,000,000
\$8.50 | 1
409,078 | \$1,000,000
\$3,477,159 | \$1,000,000 | | | 4 | \$8.50 | 159,466 | | \$1,355,461 | | (ar) Tillit door | | 0089 | 47.8 | 85 324 | ¢5 334 | | Beach Filming (ac)
Hard Bottom Mitigation (ac) | | \$300,000 | J. 7. | \$2,225,653 | | | Subtotal | | | | \$6,708,143 | \$2,360,792 | | Contingency | | 15% | | \$1,006,221 | \$354,119 | | Subtotal Contract Cost | | | | \$7,714,364 | \$2,714,911 | | Geotecnnical Investigations | | 107,203 | Ŀ | \$107,203 | \$107,203 | | Secure Easements | | 125,000 | _ | \$125,000 | | | Environmental Monitoring | | 155,207 | _ | \$155,207 | \$155,207 | | E&D+S&A | | 757,193 | 1 | \$757,193 | \$757,193 | | Total Construction Cost | | | | 296'858'8\$ | \$3,734,514 | | | Summary-Inves | Summary-Investment and Annual Costs | Costs | | | | Item | | | | Renourishment | Renourishment at Indicated Year | | | | | | 2002 | 20102 | | Construction Cost | | | | \$8,858,967 | \$3,734,514 | | Interest During Construction | | <u>.</u> | | \$44,214 |)
} | | Total Investment Cost | | | | \$8,903,182 | \$3,734,514 | | Present Worth of Each Construction | | | | \$8,903,182 | \$1,624,749 | | Total Present Worth | | | | \$10,5 | \$10,527,930 | | \$981,470 | 6.125% | | |---------------------|---------------|--| | Average Annual Cost | Interest Rate | | Estimate of Contract and Construction Costs Pompano Beach to Lauderdale-by-the-Sea 100' Added Shoreline Width (ft) Renourishment Interval: 15 yrs Project Life: 18 yrs | Item | Project Year | Unit Cost | Quantity | Renourishment a | Renourishment at Indicated Year 2002 | |---|---------------|-------------------------------------|--------------|----------------------------|--------------------------------------| | Mobilization
Reach 2 Beach Fill (cy) | 0 | \$1,000,000
\$8.50 | 1
422,325 | \$1,000,000
\$3,589,762 | \$1,000,000 | | | 15 | \$8.50 | 146,219 | | \$1,242,857 | | Beach Tilling (ac) | | \$300 | 17.8 | \$5,331 | \$5,331 | | Hard Bottom Mitigation (ac) | | \$300,000 | 7.7 | \$2,302,152 | : | | Subtotal | | | | \$6,897,246 | \$2,248,189 | | Contingency | | 15% | | \$1,034,587 | \$337,228 | | Subtotal Contract Cost | | | | \$7,931,833 | \$2,585,417 | | Geotecnnical Investigations | | 107,203 | į. | \$107,203 | \$107,203 | | Secure Easements | | 125,000 | - | \$125,000 | | | Environmental Monitoring | | 155,207 | - | \$155,207 | \$155,207 | | E&D+S&A | | 757,193 | 1 | \$757,193 | \$757,193 | | Total Construction Cost | | | | \$9,076,436 | \$3,605,020 | | | Summary-Inves | Summary-Investment and Annual Costs | l Costs | | | | met) | | | | Renourishment | Renourishment at Indicated Year | | | | | | 2002 | 2017 | | Construction Cost | | | | \$9,076,436 | \$3,605,020 | | Interest During Construction | | | | \$45,300 | Q | | Total Investment Cost | | | | \$9,121,736 | \$3,605,020 | | Present Worth of Each Construction | | | | \$9,121,736 | \$1,477,890 | | Total Present Worth | | | | \$10,59 | \$10,599,626 | | 6.125% | Interest Rate | |-----------|---------------------| | \$988,154 | Average Annual Cost | # APPENDIX B ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT **SEGMENT III** # ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT # -- SEGMENT III -- # **TABLE OF CONTENTS** | BACKGROUND | 1 | |---|----| | NATURAL FORCES | 3 | | Winds | 3 | | Tides and Currents | 3 | | Waves | 4 | | Storm Surge | 8 | | Yearly Depth Limit | 9 | | Sea Level Rise | | | HISTORICAL SHORELINE CHANGES | 14 | | Pre-Project Erosion Rates | 14 | | Post-Project Erosion Rates | 15 | | PORT EVERGLADES IMPACTS | 25 | | CROSS SHORE SEDIMENT TRANSPORT | 26 | | LONGSHORE SEDIMENT TRANSPORT | 35 | | Shoreline Change Model (GENESIS) | 35 | | Offshore Wave Data | 36 | | Nearshore Wave Data | 38 | | Calibration/Verification | 42 | | Verification of Hollywood/Hallandale GENESIS Model | 50 | | Environmental Effects from Shoreline Erosion | 50 | | Problem Summary | 51 | | PROTECTIVE BEACH DESIGN AND COSTS | 52 | | Reevaluation of the Authorized Federal Project (NED) Plan | 52 | | Implementation of the Reevaluated (NED) Plan | | | Evaluation of John U. Lloyd as Separable Element | 56 | | Plan Implementation | 58 | | Modifications to the Reevaluated Project | 65 | | Fill Dania Gap (R-94 through R-101) | 65 | | Groins | 66 | | Two-Groin Alternative | 71 | | Ten-Groin Alternative | 78 | | Mechanical Sand Bypassing | 82 | | SUMMARY | 87 | | REFERENCES | 89 | # ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT # GENERAL REEVALUATION REPORT -- SEGMENT III -- # **TABLE OF CONTENTS (continued)** #### SUB-APPENDIX B-1 Historical Beach Profile Data ### SUB-APPENDIX B-2 Detailed Cost Estimates For Reevaluating The Federal Project Width and Determining the Optimal Renourishment Interval for the Federal Project ## **SUB-APPENDIX B-3** Detailed Cost Estimates For the Evaluation of the John U. Lloyd Reach as a Separable Project Element ## SUB-APPENDIX B-4 Detailed Cost Estimates For Implementation Of The Reevaluated Plan and Determining the Optimal Renourishment Interval # **SUB-APPENDIX B-5** Detailed Cost Estimate for Project Modification that Consists of Constructing A Full Design Section Along Dania and Southern John U. Lloyd # **SUB-APPENDIX B-6** Detailed Costs Estimates For Implementation of The Reevaluated Federal Project With Groins and Future Sand Bypassing Modifications # SUB-APPENDIX B-7 Engineering Cost Estimate for Offshore Hopper Dredging, Rock Separation, and Beach Fill Placement # ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT # -- SEGMENT III -- # **TABLE OF CONTENTS (continued)** # LIST OF FIGURES | Figure B-1: Location and extent of Segment III reaches | |---| | Figure B-2: WIS Station A2009 Location MapB-5 | | Figure B-3: FEMA and WIS storm surge frequency | | relationships for Broward CountyB-9 | | Figure B-4: Depth of closure assumption at R-89 in | | John U. Lloyd State Recreation AreaB-12 | | Figure B-5: Depth of closure assumption at R-114 in Hollywood/HallandaleB-12 | | Figure B-6: MHW
Shoreline Position pursuant to 1989 | | Beach Nourishment ProjectB-16 | | Figure B-7: Shoreline change rates following 1989 beach nourishment | | Figure B-8: Volumetric change along John U. Lloyd shoreline since | | May 1989B-18 | | Figure B-9: The MHW shoreline location between R-94 and R-98B-19 | | Figure B-10: MHW Shoreline Change Rate between R-94 and R-98B-20 | | Figure B-11: Hollywood/Hallandale Shoreline Following 1991 | | NourishmentB-20 | | Figure B-12: Shoreline positions following 1991 Hollywood Hallandale | | NourishmentB-21 | | Figure B-13: Performance of 1991 Hollywood/Hallandale Beach | | Nourishment ProjectB-22 | | Figure B-14: Summary of Volumetric Change Rates for | | Segment III ShorelineB-24 | | Figure B-15: Beach Recession, R, Definition Sketch | | Figure B-16: Example of Refraction/Diffraction results at Port EvergladesB-41 | | Figure B-17: High-resolution GENESIS model calibration – initial results B-45 | | Figure B-18: High-resolution GENESIS model calibration with | | consideration of offshore sand lossesB-46 | | Figure B-19: High-resolution GENESIS model verification | | Figure B-20: Verification of GENESIS model used in taper investigationB-49 | | Figure B-21: Predicted performance of taper alternatives at the northern end of | | the Hollywood/Hallandale beach fill | # ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT # -- SEGMENT III -- # TABLE OF CONTENTS (continued) | B-63 | |-------| | | | | | B-68 | | B-70 | | B-73 | | B-76 | | B-79 | | B-80 | | sB-84 | | | | B-85 | | | # ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT # GENERAL REEVALUATION REPORT -- SEGMENT III -- # **TABLE OF CONTENTS (continued)** # LIST OF TABLES | Table B-1: Wave heights and return periods - WIS Station 9 (1976-1995) | B-6 | |---|------| | Table B-2: Mean and maximum wave heights (1976-1995) | B-6 | | Table B-3: Occurrence of wave height and period for all | | | directions (1976-1995). | B-7 | | Table B-4: Estimated depth of closure in Segment III | B-11 | | Table B-5: Pre-project shoreline and beach volume change rates | B-14 | | Table B-6: Beach volume change rates for the Segment III | | | Shoreline 1989-1998 | B-24 | | Table B-7: Sensitivity analysis for SBEACH transport coefficients | B-28 | | Table B-8: Tropical storms with influence on Broward County | B-31 | | Table B-9: Extratropical Storms with Influence on Broward County | B-31 | | Table B-10: Recession vs. frequency of occurrence results | B-34 | | Table B-11: Uncalibrated longshore sand transport rates 1976-1995 (cy/yr) | B-36 | | Table B-12: Summary of nearshore wave events by angle and period band | B-39 | | Table B-13: John U. Lloyd Beach SRA Sea Turtle Nesting Data | B-51 | | Table B-14: Project dimensions and costs for reevaluation of | | | authorized project | B-54 | | Table B-15: Renourishment interval optimization for the Segment III | | | reevaluated project cost | B-54 | | Table B-16: Summary of JUL Reach alternative sand volumes and costs | B-57 | | Table B-17: Re-optimization of renourishment interval for | | | plan implementation | | | Table B-18: Estimated overfill ratios for Segment III | B-59 | | Table B-19: Computation of overfill for Segment III shoreline | B-60 | | Table B-20: Expected damage to the groin field for various storms | | | exceeding the design storm | B-77 | | Table B-21: Measured beach volume change immediately | | | north of Port Everglades(adapted from Coastal Tech., 1994) | B-84 | | Table B-22: Annualized cost summary for project modifications | B-88 | # APPENDIX B ENGINEERING DESIGN AND COST ESTIMATES BROWARD COUNTY, FLORIDA SHORE PROTECTION PROJECT GENERAL REEVALUATION REPORT --- SEGMENT III --- ### **BACKGROUND** - B-1. The Broward County, Florida Shore Protection Project was authorized by Section 301 of Public Law 89-298, passed on 27 October 1965. The project was authorized in accordance with the report of the Chief of Engineers dated 15 June 1964 and is described in House Document 91, 89th Congress. The project was to be constructed in three separable segments. These three segments are: I) the north county line to Hillsboro Inlet, II) Hillsboro Inlet to Port Everglades, and III) Port Everglades Inlet to the south county line. This appendix is concerned with Segment III of the authorized project. Since the Broward County Shore Protection Project was authorized, two reaches of Segment III have been constructed. These are (1) the northern section of the John U. Lloyd State Recreational Area shoreline and (R-86 to R-94) and (2) the Hollywood/Hallandale shoreline (R-101 to R-128). The location and extent of these reaches is summarized in Figure B-1. - B-2. The authorization for the Segment III shoreline provided for the restoration of 8.1 miles of shoreline and periodic nourishment for a period of 10 years following initial construction of the project. Following a 1991 Reevaluation Report Section 934 Study, Federal participation in the authorized project was extended to 50 years after initial construction. Additionally, Section 506 of the Water Resources Development Act of 1996 (P.L. 104-303) extended the authorization to 50 years from initial construction. - B-3. Initial construction of the John U. Lloyd portion of Segment III occurred in late 1976 and early 1977. That project extended along about 1.52 miles of shoreline between FDEP monuments R-86 and R-94. This project's first renourishment occurred in 1989. - B-4. The Hollywood and Hallandale project reach was originally constructed in 1979. This project included about 5.25 miles of shoreline between R-101 and R-128. The 1978 G&DDM concerning Segment III (BCEPD, 1978) altered project features for the Hollywood and Hallandale beaches from those prescribed in HD91/89 to reflect changed site conditions and Federal criteria. An evaluation of the 1979 project's performance and recommendations for the project dimension modifications were included in the 1990 General Design Memorandum Addendum for the Hollywood and Hallandale shorelines. Figure B-1: Location and extent of Segment III reaches. B-5. The objective of this appendix is to quantify the historical shoreline erosion problem along the Broward County Segment III shoreline, to evaluate the performance of previously constructed portions of the authorized project, and to investigate alternatives to reduce the total cost of the shore protection project. The analyses include an evaluation of historical shoreline and beach volume changes, an estimate of the impact of Port Everglades to the Segment III shoreline, and evaluation of the typical longshore sand transport rates and the magnitude of cross-shore sand transport and beach recession due to storm events. ### **NATURAL FORCES** B-6. Many factors influence the coastal processes along the Broward County shoreline. These include winds, tides, currents, waves, storm effects, coastal structures, and the nearshore reef system. The role of each of these factors and their contribution to beach erosion in Broward County is described in the following paragraphs. ### Winds B-7. Winds, and the waves they generate, are the primary mechanisms of sand transport along the Segment III shoreline at the project site. Typical prevailing winds are from the northeast through the southeast with easterly winds occurring most often. During winter months (December through March), winds are often out of the northeast and north. Winter storms include nor'easters that can cause extensive beach erosion and shorefront damage. The summer months (June to September) are characterized by tropical weather systems traveling east to west in the lower latitudes. These tropical cyclones can develop into tropical storms and hurricanes, which can generate devastating winds, waves and storm surge. Southeast trade winds make up the typical summer winds. ## **Tides and Currents** B-8. Astronomical tides along the Broward County coast are semi-diurnal. The mean and spring tide ranges at Port Everglades are 2.5 feet and 3.1 feet, respectively. On a regional scale, tidal ranges decrease from a mean range of 2.4 feet at the north county line to a range of 2.1 feet at the south county line (NOAA, 1997). All elevations presented in this appendix are referenced to National Geodetic Vertical Datum of 1929 (NGVD), unless stated otherwise. For survey purposes in Broward County coastal areas, the U.S. Army Corps of Engineers, Jacksonville District (CESAJ) has established an invariant construction datum, equivalent to mean low water (MLW) which is 0.78 feet below NGVD and 2.58 feet below mean high water (MHW). Tidal measurements at NOAA's gage 872-2951 indicate that the highest and lowest observed water levels were +3.65 feet NGVD, on 25 Oct 1973, and –2.04 feet, NGVD, on 26 Apr 1971, respectively¹. ¹Statistics obtained at the following website: http://www.opsd.nos.noaa.gov/bench/ B-9. Currents affecting the beaches of Broward County include littoral currents and inlet-related tidal currents. Littoral currents may be classified as longshore or cross-shore currents. Longshore currents are caused by waves breaking at an angle relative to the shoreline, and they generally determine the long-term direction and magnitude of littoral sand transport. The most influential cross-shore currents are typically generated during storm events that may be characterized by short-term extreme wave and/or water level conditions. Storm-induced cross-shore currents often result in the offshore transport of beach material, in some cases to locations seaward of the local closure depth. In other cases, the transported beach material remains in the zone of active transport, and may be redistributed back onto the beach during periods of onshore transport. More detailed discussions of longshore and cross-shore sediment transport will be presented in subsequent
sections of this appendix. ## Waves - B-10. The principal forcing mechanism that causes beach erosion is the dissipation of wave energy (and corresponding transport of sand particles) as waves enter the nearshore zone and break. Wave height and period, along with magnitude and phasing of the tide level and in some cases, storm surge, are the most important factors influencing the project shoreline. Since the 1980's, the U.S. Army Engineer, Waterways Experiment Station's Coastal Engineering Research Center (CERC) has executed a series of wave hindcast studies for sites in the Gulf of Mexico, Atlantic and Pacific Oceans. The revised Atlantic wave data time series resulted from the Wave Information Study (WIS) Phase II hindcast for the 20-year period 1956-1975, as documented in WIS Report 30 (Hubertz et al., 1993). This study excluded any waves generated by tropical cyclones and swell propagating from the South Atlantic; extratropical storms, however, are included in the data set. CERC has also made available an updated Atlantic hindcast covering the 20-year period 1976-1995 (Brooks and Brandon, 1995). The updated hindcast included wave information for both extratropical storms and tropical cyclones. - B-11. The wave statistics used for this analysis were obtained from WIS Station A2009 that is located at latitude 26.00 degrees north and 80.00 degrees west (Figure B-2). Water depth at this station is 220 meters (722 feet). - B-12. Tables B-1 to B-4 summarize the 1976-1995 hindcast wave results for Station 9. Table B-1 contains estimated wave heights for various return periods. Table B-2 is a summary of the mean and largest significant wave by month and year for the 20-year period. This table is useful in showing the range distribution of wave height throughout the year. The percent occurrence of wave height and period for all directions is shown in Table B-3. - B-13. The hindcasts provide time histories of wave height, period and direction, listed at three-hour intervals over the 20-year study periods. The significant wave height (H_{mo}) represents a combination of sea and swell. The wave period (T_p) and direction reflect characteristics of the dominant wave. Wave direction (D_p) is measured clockwise in degrees from true north. Figure B-2: WIS Station A2009 Location Map Table B-1: Wave heights and return periods - WIS Station 9 (1976-1995). | | Significant | Significant | |---------------|-------------|-------------| | Return Period | Wave Height | Wave Height | | (Years) | (meters) | (feet) | | 2 | 5.3 | 17.3 | | 5 | 6.0 | 19.7 | | 10 | 6.4 | 21.0 | | 20 | 6.9 | 22.6 | | 25 | 7.0 | 23.0 | | 50 | 7.5 | 24.6 | Table B-2: Mean and maximum wave heights (1976-1995). # MEAN WAVE HEIGHT (IN METERS) BY MONTH AND YEAR STATION: A2009 (26.00N/ 80.00W / 220.0M) | YEAR | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | MEAN | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | 1976 | 1.3 | 1.1 | 1 | 1 | 0.9 | 0.7 | 0.4 | 0.7 | 0.4 | 1.3 | 1.3 | 1.5 | 1 | | 1977 | 1.1 | 1 | 1.1 | 1.5 | 1 | 0.4 | 0.5 | 0.9 | 0.6 | 0.9 | 1.4 | 1.2 | 1 | | 1978 | 1.2 | 1.2 | 1 | 0.9 | 0.7 | 0.6 | 0.6 | 0.6 | 0.8 | 1.4 | 1.3 | 1.4 | 1 | | 1979 | 1.7 | 1.3 | 1.3 | 1.3 | 0.9 | 0.8 | 0.6 | 0.5 | 1.3 | 0.9 | 1.6 | 1.3 | 1.1 | | 1980 | 1.1 | 1.4 | 1.2 | 0.9 | 0.7 | 0.5 | 0.4 | 0.8 | 0.6 | 0.8 | 1.3 | 1.3 | 0.9 | | 1981 | 1 | 1.7 | 1.4 | 1.1 | 0.7 | 0.7 | 0.5 | 0.8 | 0.8 | 1.1 | 1.2 | 1 | 1 | | 1982 | 1 | 0.9 | 1 | 0.8 | 0.9 | 0.7 | 0.5 | 0.5 | 0.6 | 1.1 | 1.2 | 1.3 | 0.9 | | 1983 | 0.9 | 1.4 | 1.2 | 1.1 | 0.9 | 0.6 | 0.5 | 0.5 | 0.9 | 1.1 | 1 | 1.4 | 1 | | 1984 | 1.6 | 1.2 | 1.2 | 0.9 | 1.1 | 0.7 | 0.6 | 0.5 | 1.2 | 1.5 | 1.7 | 1.3 | 1.1 | | 1985 | 1 | 1.4 | 1.1 | 1.1 | 0.5 | 0.5 | 0.5 | 0.7 | 1.3 | 1 | 1.3 | 1.3 | 1 | | 1986 | 1.2 | 1 | 1.5 | 0.9 | 1.1 | 0.6 | 0.4 | 0.8 | 0.9 | 1.1 | 1.2 | 1.3 | 1 | | 1987 | 1.2 | 1.1 | 1.7 | 0.9 | 0.9 | 0.7 | 0.6 | 0.5 | 0.5 | 1.3 | 1.4 | 1 | 1 | | 1988 | 1.4 | 1.1 | 1 | 0.9 | 0.8 | 0.8 | 0.6 | 0.5 | 1 | 1 | 0.9 | 0.9 | 0.9 | | 1989 | 0.9 | 1 | 1 | 0.7 | 0.6 | 0.6 | 0.4 | 0.4 | 0.8 | 0.9 | 0.7 | 0.8 | 0.7 | | 1990 | 0.9 | 1.3 | 1.3 | 1 | 0.9 | 0.6 | 0.6 | 0.4 | 0.7 | 1 | 1.1 | 1.1 | 0.9 | | 1991 | 0.9 | 1 | 1 | 1 | 0.9 | 0.6 | 0.4 | 0.5 | 0.6 | 1.1 | 1.1 | 1 | 0.8 | | 1992 | 1 | 0.9 | 0.9 | 1 | 0.8 | 0.6 | 0.6 | 0.6 | 0.7 | 1 | 1.4 | 1.1 | 0.9 | | 1993 | 1.3 | 1.1 | 1.2 | 1.1 | 1 | 0.7 | 0.4 | 0.5 | 0.7 | 0.8 | 1.2 | 1.1 | 0.9 | | 1994 | 1.4 | 1.2 | 1 | 1.1 | 0.8 | 0.6 | 0.7 | 0.7 | 0.8 | 0.9 | 1.3 | 1.2 | 1 | | 1995 | 1 | 0.9 | 1.3 | 0.9 | 0.7 | 0.7 | 0.6 | 0.9 | 0.8 | 1.3 | 1.1 | 1.1 | 1 | | MEAN | 1.2 | 1.2 | 1.2 | 1 | 0.8 | 0.6 | 0.5 | 0.6 | 0.8 | 1.1 | 1.2 | 1.2 | | Table B-2: Mean and maximum wave heights (1976-1995). (cont'd) | LARGEST WAVE HEIGHT (IN METERS) BY MONTH AND YEAR | | | | | | | | | | | | | |--|--|--------|-----|-----|-----|-----|-----|-----|------|------------------------|-----|-----| | YEAR | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1976 | 3.9 | 3.7 | 3.8 | 2.9 | 3.2 | 1.2 | 0.8 | 1.9 | 0.8 | 3.5 | 3.3 | 4 | | 1977 | 2.4 | 2.4 | 3.3 | 4.1 | 3 | 1.2 | 1.1 | 2.5 | 2.1 | 2.7 | 4.3 | 3.1 | | 1978 | 3.1 | 3.7 | 3.1 | 2.7 | 2.4 | 3.2 | 1.9 | 1.4 | 1.7 | 3.9 | 4 | 5.2 | | 1979 | 5.7 | 2.8 | 4.3 | 4.2 | 2.7 | 2.9 | 2.9 | 1.4 | 6.6 | 2.7 | 4.1 | 3.8 | | 1980 | 2.6 | 4.9 | 3 | 3 | 2.3 | 1.9 | 1.4 | 4.8 | 1.4 | 2 | 3.3 | 3 | | 1981 | 3.6 | 5.1 | 2.9 | 3.5 | 1.8 | 1.7 | 1.5 | 4.4 | 1.7 | 3.2 | 3.4 | 2.9 | | 1982 | 3.2 | 3 | 4.4 | 2.2 | 2.1 | 2.8 | 1.7 | 1.1 | 1.1 | 2.4 | 3.4 | 3.1 | | 1983 | 2.4 | 4.2 | 5 | 3.2 | 2.2 | 1.2 | 1.9 | 2.4 | 2.9 | 3.9 | 3.4 | 5.2 | | 1984 | 6.7 | 3.5 | 3.8 | 2 | 2.8 | 1.8 | 1.4 | 2.3 | 5.1 | 3 | 5.2 | 3.7 | | 1985 | 3 | 3.9 | 4.1 | 4 | 1.2 | 2 | 3.6 | 2.3 | 3.6 | 2.4 | 6.6 | 3.5 | | 1986 | 4.7 | 3.2 | 4.1 | 2 | 2.5 | 1.6 | 1.4 | 2 | 1.9 | 3.6 | 3 | 4.1 | | 1987 | 4.5 | 2.8 | 5.6 | 2.3 | 3.7 | 2.7 | 1.6 | 1.5 | 0.8 | 3.7 | 3.7 | 3.4 | | 1988 | 4.3 | 2.7 | 2.4 | 2.5 | 2.4 | 2.9 | 1.4 | 2 | 3.5 | 2.5 | 2.1 | 2.1 | | 1989 | 2.1 | 2.2 | 3.7 | 1.4 | 1.7 | 1.1 | 1 | 1.8 | 2.1 | 2.3 | 1.6 | 1.9 | | 1990 | 2.3 | 3.2 | 3.5 | 2.7 | 1.9 | 1.3 | 1.5 | 0.9 | 1.1 | 2.3 | 3.5 | 3.6 | | 1991 | 2.8 | 2 | 3.4 | 2.7 | 3.6 | 1.6 | 1 | 1.2 | 1.6 | 2.8 | 2.2 | 4.1 | | 1992 | 2.5 | 2 | 2.6 | 2.7 | 1.6 | 1.2 | 1.2 | 6.9 | 1.4 | 3.2 | 3 | 2.1 | | 1993 | 3.5 | 2.5 | 5 | 2.5 | 2 | 1.9 | 1 | 1.4 | 2.1 | 2.8 | 2.3 | 3.5 | | 1994 | 3.2 | 3.9 | 3.7 | 2.1 | 2.6 | 1.2 | 1.5 | 1.5 | 1.6 | 2.8 | 5.9 | 3.6 | | 1995 | 3.2 | 1.7 | 2.8 | 1.9 | 1.3 | 2 | 2.6 | 2.5 | 1.3 | 2.7 | 1.9 | 2.5 | | 20-YEA | R STAT | ISTICS | | | | | | | | | | | | MEAN SPECTRAL WAVE HEIGHT
MEAN PEAK WAVE PERIOD | | | | | | | | | (SEC | TERS) 0.9
ONDS) 7.3 | | | | MOST | MOST FREQUENT 22.5 DEGREE(CENTER)DIRECTION BAND (DEGREES) 45 | | | | | | | | | KEES) 45 | | | # Table B-3: Occurrence of wave height and period for all directions (1976-1995). (METERS) 0.6 (SECONDS) 3.5 (METERS) 6.9 (SECONDS) 10 (DEGREES) 54 (YRMODYHR) 92082409 STANDARD DEVIATION OF WAVE Hmo WAVE TP ASSOCIATED WITH LARGEST WAVE Hmo. PEAK DIRECTION ASSOCIATED WITH LARGEST WAVE HS STANDARD DEVIATION OF WAVE TP DATE LARGEST Hmo OCCURRED LARGEST WAVE Hmo. # PERCENT OCCURRENCE (X1000) OF HEIGHT AND PERIOD FOR ALL DIRECTIONS | STATION: A | .2009 | (26.0N | , 80.01 | 7 / 220 | O.OM) | | | | N(
% (| O. CASES:
OF TOTAL: | | |------------|-------|--------|---------|---------|---------|--------|------|--------|-----------|------------------------|-------| | HEIGHT | | | Dī | ישע אמי | RIOD (I | N SECO | NDG) | | 6 (| JF TOTAL. | 100.0 | | IN | <4.0 | 4.0- | 5.0- | 6.0- | 7.0- | 8.0- | , | 10.0- | 11 0- | 12 0- | TOTAL | | METERS | 11.0 | 4.9 | 5.9 | 6.9 | 7.9 | 8.9 | | 10.9 | | | IOIAL | | .0099 | 7245 | 13112 | 7402 | 5292 | 4618 | 4269 | 3480 | 3013 | 2936 | 10752 | 62119 | | 1.00-1.99 | | 1658 | 8453 | 9662 | 2703 | 1468 | 1517 | 924 | 636 | 3692 | 30713 | | 2.00-2.99 | | | 23 | 467 | 2802 | 1620 | 174 | 176 | 123 | 361 | 5746 | | 3.00-3.99 | | | | | 68 | 407 | 542 | 44 | 6 | 41 | 1108 | | 4.00-4.99 | | | | | | 18 | 106 | 95 | 10 | | 229 | | 5.00-5.99 | | | | | | | 10 | 15 | 22 | 6 | 53 | | 6.00-6.99 | | | | | | | | 5 | 3 | 5 | 13 | | 7.00-7.99 | | | | | | | | | | | 0 | | 8.00-8.99 | | | | | | | | | | | 0 | | 9.00-9.99 | | | | | | | | | | • | 0 | | 10.00+ | | | | | | | | | | • | 0 | | TOTAL | 7245 | 14770 | 15878 | 15421 | 10191 | 7782 | 5829 | 4272 | 3736 | 14857 | | | MEAN Hmo(M | i) = | . 9 | LARGI | EST Hmo | o(M) = | 6.9 | MEA | N TP(S | EC) = | 7.3 | | # **Storm Surge** - B-14. Storm surge is generally defined as an increase in water level that results from forcing by atmospheric weather systems. Surges occur primarily as a result of atmospheric pressure gradients and surface stresses created by wind blowing over a water surface. When the water's momentum carries it beyond the position of static equilibrium, a long-wave phenomenon results in which the water surface increases downwind and decreases upwind. In addition to wind speed, direction and duration, the surge is also influenced by water depth, length of fetch, and frictional characteristics of the nearshore sea bottom. An estimate of these water level changes is required for storm modeling and the design of beach fill crest elevations. - B-15. The Federal Emergency Management Agency (FEMA) has performed investigations to determine hurricane surge elevations in the Flood Insurance Studies (FIS) for Broward County. Wave heights were computed along transects located along the shoreline, considering the combined effects of changes in ground elevation, vegetation and physical features. - B-16. Higher frequency storms and storm surge elevations for other meteorologically induced water level anomalies (i.e., nor'easter type storms) were obtained from WIS Report 7 (Ebersole, 1982). Hindcasting of the
nor'easter storm surges was performed utilizing historical wind and pressure fields. - B-17. Figure B-3 provides storm frequency versus return period curves for Broward County. The FEMA hurricane surge curve is based on data points for the 10, 50, 100, and 500-year recurrence interval points. The WIS northeaster surge curve is based on data points for the 2, 5, 10, 20 and 50-year recurrence interval at Miami Beach, Florida. The WIS northeaster surge data does not include tide, therefore, since the normal duration of a northeaster is several days (i.e. several tide cycles), a curve which provides the WIS northeaster surge height with a spring tide, a worst case scenario, is included on Figure B-3. - B-18. The cross shore sediment transport analysis, discussed more thoroughly in paragraphs B-52 through B-79, involved the modeling of beach profile changes in response to specific historical storms; therefore, storm surge hydrographs characteristic of those specific storms were required as input. Those surge hydrographs were obtained from a database of storm information (Scheffer et al., 1994) that was generated by CERC as a product of the Dredging Research Program (DRP). Tasks undertaken to generate this database included: 1) selection of historic storm events (of both tropical and extratropical origin), 2) estimation of descriptive storm parameters to be used as input to a planetary boundary layer wind field model, 3) execution of that model to generate temporal and spatial storm-induced wind and pressure fields, and 4) use of that wind and pressure data as input to the large scale hydrodynamic model, ADCIRC, which computes spatial and temporal distributions of storm surge elevations and currents. The resulting DRP database includes storm surge and current data for 486 discrete locations, located throughout the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea. DRP Station 442, at latitude 25.994 degrees north and 80.084 degrees west, was selected for this Broward County application. This selection was based on the proximity of DRP Station 442 to the source of corresponding wave data, WIS Station A2009. More detailed information on the character and use of this storm surge data is provided in the discussion of cross-shore (storm-induced) sediment transport analyses. Figure B-3: FEMA and WIS storm surge frequency relationships for Broward County. # **Yearly Depth Limit** B-19. For natural sand beaches, a useful coastal processes parameter is the yearly depth limit of the active nearshore beach profile. This is also referred to as the depth of closure (DOC). Beyond this depth one negligible sand movement is expected under average annual conditions. Hallermeier (1978) developed a procedure for estimating the depth of closure, d_c . This depth is based upon the approximate extreme wave condition for nearshore significant waves, and may be calculated by: $$d_c=2.28 H_e - 68.5 (H_e^2/gT_e^2)$$ where: H_e = nearshore extreme significant wave height (in meters) T_e = nearshore extreme significant wave period (in meters) $g = acceleration of gravity constant, 9.81 m/sec^2$. The extreme nearshore significant wave height, H_e , is defined as the "effective" wave height, which has a 0.137% probability of occurring. This wave height is related to the deepwater mean wave height as follows (Dean and Dalrymple, 1996): $$H_e = H_{mean} + 5.6$$ s where **S** is the standard deviation of the annual wave height (in meters). - B-20. The mean wave height, from the WIS hindcast data (Table B-2), is 0.9 meter and the standard deviation is 0.6 meter. The nearshore extreme significant wave period used is the wave period associates with the largest wave, which is 10.0 sec (Table B-2). Using the above values and equations, the predicted depth of closure is 27.7 feet. - B-21. The theoretical depth of closure was also calculated using the Birkemeier equation (Birkemeier, 1985). This approach typically provides a more reasonable estimate, compared to Hallermeier's approach, which usually over-predicts the depth of closure. The Birkemeier equation is as follows: $$d_c = 1.75 H_e - 57.9 (H_e^2/gT_e^2)$$ This approach yields a depth of closure of 20.9 feet, which is a more reasonable estimated than Hallermeier's, but still deeper than the inner reef. - B-22. Both of the aforementioned methods do not consider the energy dissipation associated with the reef systems offshore of Broward County. These reefs reduce the wave energy that eventually reaches the beach along the County's shoreline. Therefore, it is expected that the limit of active sand transport would be much shallower than predicted with these methods. - B-23. Review of historical beach profiles collected along the Segment III shoreline indicates that the actual depth of closure along the shoreline varies between 5.5 and 16 feet. The variations in the elevations are related to the highly variable offshore reef conditions that regulate the amount of wave energy that reaches any particular area of shoreline. It is also due to the highly irregular nature of the nearshore reef system and the associated perching effects. Irregularities in the latter would produce localized shallow and deep areas at the toe of the beach. - B-24. The depth of closure, as indicated for the historical beach profile data, was estimated for the beach at each R-monument location along Segment III. The Segment was divided into two sub-reaches that include (1) John U. Lloyd Beach State Recreation Area (R-86 to R-95) and (2) the cities of Hollywood and Hallandale (R-99 to R-128). The estimated DOC's for each profile location are summarized in Table B-4. B-25. For the John U. Lloyd reach, surveys associated with the pre- and post-construction of the 1989 beach restoration project are compared with surveys taken on the following dates: November 1990, August 1991, October 1993, August 1998, and August 1999. DOC for the Hollywood/Hallandale reach was estimated using pre- and post-construction surveys of that area's 1991 beach fill along with previously mentioned October 1993, August 1998 and August 1999 surveys. Figure B-4 details profile lines and the DOC estimate at monument R-89 in John U. Lloyd State Recreation Area. Here, the depth of closure is estimated at 6.0 feet NGVD. Figure B-5 depicts a DOC of 14.0 feet NGVD at monument R-114 in Hollywood/Hallandale. Table B-4: Estimated depth of closure in Segment III. | | | TT 11 1/TT 11 1 1 | | | |----------|------------|----------------------|------------|--| | John U | . Lloyd | Hollywood/Hallandale | | | | | DOC | | DOC | | | Monument | (-ft-NGVD) | Monument | (-ft-NGVD) | | | 86 | 5.5 | 99 | 12.0 | | | 87 | 9.0 | 100 | 14.0 | | | 88 | 6.5 | 101 | 16.0 | | | 89 | 6.0 | 102 | 15.0 | | | 90 | 7.0 | 103 | 15.0 | | | 91 | 7.0 | 104 | 15.0 | | | 92 | 7.5 | 105 | 10.0 | | | 93 | 8.5 | 106 | 10.0 | | | 94 | 13.0 | 107 | 10.0 | | | 95 | 13.0 | 108 | 10.0 | | | | | 109 | 14.0 | | | Average | 8.3 | 110 | 10.0 | | | | | 111 | 8.0 | | | | | 112 | 9.0 | | | | | 113 | 12.0 | | | | | 114 | 13.0 | | | | | 115 | 12.0 | | | | | 116 | 14.0 | | | | | 117 | 12.0 | | | | | 118 | 14.0 | | | | | 119 | 13.0 | | | | | 120 | 12.0 | | | | | 121 | 13.0 | | | | | 122 | 12.0 | | | | | 123 | 14.0 | | | | | 124 | 14.0 | | | | | 125 | 14.0 | | | | | 126 | 14.0 | | | | | 127 | 13.0 | | | | | 128 | 13.0 | | | | | | | | | | | Average | 12.6 | | | | | | | | | Overall | Average | 11 | 1.5 | | B-26. The overall average DOC for John U. Lloyd and Hollywood/Hallandale combined is 11.5 feet NGVD. The average DOC along the John U. Lloyd Beach State Recreation Area is 8.3 feet NGVD while the DOC along Hollywood/Hallandale averages 12.6 feet NGVD. The depth of closure along the John U. Lloyd reach is much shallower than that for Hollywood the perching effects of a rock shelf along the northern areas of Segment III. Figure B-4: Depth of closure assumption at R-89 in John U. Lloyd State Recreation Area. Figure B-5: Depth of closure assumption at R-114 in Hollywood/Hallandale. ## Sea Level Rise B-27. The geologic record of historical sea level variations indicates that both increases and decreases in global sea level have occurred. Some authorities claim that evidence indicates our planet may be entering a new ice age, which would result in a lower sea level. Others argue that increasing atmospheric concentrations of carbon dioxide and other gases are causing the Earth to warm, contributing to a sea level rise. Nevertheless, global cooling and warming both contribute to absolute global sea level change, or eustatic sea level change. Total relative sea level change has been estimated to be 2.3mm per year based on data at Miami Beach (Lyles et al., 1988). This trend suggests that during the 30 years of remaining project life (2001-2030), the sea level will rise about 69mm (0.23ft) along Segment III. B-28. <u>Shoreline Recession-Sea Level Rise</u>. As sea level rises, the shoreline will be subjected to flooding, profile recession, and possibly, erosion. Per Bruun (1962) proposed a formula for estimating the rate of shoreline recession based on the local rate of sea level rise. This methodology also includes consideration of local topography and bathymetry. Bruun's approach assumes that with a rise in sea level, the beach profile will attempt to reestablish the same bottom depths relative to the surface of the sea that existed before the sea level rise. If the longshore littoral transport in and out of a given shoreline area is equal, then the quantity of material required to reestablish the nearshore slope must be derived from erosion of the shore. Shoreline recession resulting from sea level rise can be estimated using Bruun's Rule, as defined below: ``` x = ab/(h+d) where, ``` x = shoreline recession (in feet) attributable to sea level rise. h = average elevation of shoreline above mean high water (+8.0 ft, NGVD). d = MLW depth contour beyond which there is no significant sediment motion (-11.5 ft, NGVD). b =
horizontal distance (700 feet averaged) from the beach profile berm elevation to the depth contour d. a = specified relative sea level rise (ft) for time period t (0.23 ft.). As mentioned above, the mean estimated sea level rise for the year 2030 along Broward County shores is 0.23 feet. Shoreline recession corresponding to this estimate is 8.3 feet, or 0.28 feet per year. B-29. The Bruun procedure is applicable to long straight sandy beaches having an uninterrupted supply of sand. Little is known about the rate at which profiles respond to changes in water level; therefore, this procedure should only be used for estimating long-term changes. The procedure is not a substitute for the analysis of historical shoreline and profile change. If little or no historical data is available, then historical analysis may be supplemented by this method to provide an estimate of long-term erosion rates attributable to sea level rise. The offshore contours in the project area are not entirely straight and parallel. Also, the presence of offshore rock formations in Broward County can affect the shoreline in a manner that might be inconsistent with this rule. However, Bruun's Rule can provide an estimate of the potential shoreline changes within the project area attributable to a projected rise in sea level. B-30. <u>Shoreline Erosion-Sea Level Rise.</u> For this discussion, it is assumed that as an unarmored beach erodes, it maintains approximately the same profile above the seaward limit of significant transport; therefore, the volume of eroded material per foot of shoreline equals the vertical distance from the berm crest (+8.0 feet) to the depth of the seaward limit of the active profile (-11.5 feet), multiplied by the horizontal recession of the profile, x. Using the most likely estimate of shoreline recession due to sea level rise (i.e., x = 8.3 feet), the potential erosion volume for the period 2001-2030 would be 0.2 cubic yards per foot of shoreline per year. # HISTORICAL SHORELINE CHANGES # **Pre-Project Erosion Rates** B-31. Pre-project Segment III shoreline and beach volume change rates were evaluated as part of a reconnaissance report for Port Everglades to the south county line (USACE, 1963). These rates, which were used to formulate the authorized project, are also reported in House Document 91, 89th Congress. The shoreline change rates were evaluated for the period 1929-1961 along three reaches of the Segment III shoreline. The reaches included the first two miles south of Port Everglades (approximately R-86 to R-97), along with R-98 to R-100, and R-101 to R-128. The reported pre-project shoreline and beach volume change rates for these reaches are summarized in Table B-5. These rates are assumed to represent pre-project conditions for the purposes of this reevaluation report. Table B-5: Pre-project shoreline and beach volume change rates. | | | | Volume | Shoreline | |------------|--------|-------------|----------|-----------| | Location | Reach | Monuments | Change | Change | | | (ft) | | (cy/yr) | (ft/yr) | | JUL | 8,000 | R86 - R94 | -54,606 | -5.0 | | SJUL/Dania | 7,300 | R95 - R100 | -19,091 | -2.5 | | Hollywood/ | 27,500 | R101 - R128 | -84,364 | -1.0 | | Hallandale | | | | | | Total | 42,800 | R86 – R128 | -158,061 | -2.0 | # **Post-Project Erosion Rates** - B-32. Two reaches of the Segment III shoreline have been constructed following authorization of the project segment. These include the northern 8,000 feet of the John U. Lloyd Beach State Recreation Area shoreline and approximately 28,800 feet of shoreline along Hollywood/Hallandale. - B-33. The 8,000-ft (approx.) shoreline south of Port Everglades Entrance -- from about R-86 through R-94 -- has been nourished twice: first in 1977 (1.09 Mcy) and most recently in 1989 (over 0.6 Mcy). The physical performance of the 1977 project was assessed in 1988 as part of the planning for the project's first renourishment in 1989 (BCEPD, 1987). - B-34. Survey data collected following completion of the 1978 JUL project suggest severe shoreline recession along the first 3,000 to 3,500 ft south of the inlet, decreasing at 5,000 to 6,000-ft south thereof. It was estimated that the shoreline change rate along the northern reach of JUL was approximately 31,000 cubic yards per year following the 1978 project (USACE, 1990). This estimated rate was developed through comparison of a 1978 and 1985 beach profile surveys. - B-35. The 27,500-ft shoreline from the northern end of Hollywood to the south County line -- from about R-101 through R-128 -- has also been nourished twice: first in 1979 (1.98 Mcy) and most recently in 1991 (over 1.11 Mcy). - B-36. The performance of the 1979 Hollywood/Hallandale shoreline was also evaluated for purposes of formulation of the first renourishment (USACE, 1990). In general, 1979 project suffered from planform equilibration due to irregular sand volume placement. This resulted in areas of high erosion and accretion shortly after the project's completion. The nominal shoreline recession during the six-year period after the 1979 fill was about 75 feet (or, about 12.5 ft/yr, on average). It is estimated that the average-annual sand loss rate for the project was about 54,000 cubic yards per year. This estimated rate was developed through comparison of a 1979 and 1988 beach surveys. - B-37. The results of the physical performance assessment of both the 1977 John U. Lloyd and 1979 Hollywood Hallandale beach fill projects suggest that the average annual sand volume loss rate was lower than estimated in the pre-authorizing documents. It is noted, however, that the performance of the 1977 John U. Lloyd and 1979 Hollywood/Hallandale beach fill projects was evaluated with only limited survey data. - B-38. Beach profile surveys associated with the construction and monitoring of the 1989 John U. Lloyd and 1991 Hollywood first renourishment projects were collected more frequently. Comprehensive surveys of the Segment III shoreline were collected in October 1993 and August 1998. Along the northern reach of the John U. Lloyd shoreline, additional beach profile surveys were collected in August 1978, May 1989, August 1989, and November 1990. Also, along the Hollywood and Hallandale shorelines, additional beach surveys were performed in March 1991, August 1991, February 1992, and August 1992. B-39. Due to large amount of beach profile survey data available for the 1989 John U. Lloyd and 1991 Hollywood/Hallandale projects, the measured performance of these projects is considered to represent proto-type conditions for beach fills along the proposed project shoreline. Both short-term process such as equilibration and long-term processes such as annual alongshore change can be evaluated with beach profile data for these projects. Therefore, the expected short- and long-term performance of the future projects is expected to be similar to the 1989 and 1991 projects. B-40. <u>John U. Lloyd North Shoreline (R-86 to R-94)</u>. The most recent beach nourishment along the northern half of John U. Lloyd Beach State Recreation Area, downdrift of Port Everglades Entrance, included approximately 0.69 Mcy placed in 1989. The shoreline position over the approximately ten years following construction is depicted relative to the pre-project shoreline in Figure B-6. Inspection of the figure indicates that rapid and localized retreat characterized the northern 1,500 to 2,500 ft of the project (i.e., immediately downdrift of the inlet's south jetty). Further south, between about 2,500 and 5,500 ft from the jetty, the fill appears to have receded in a more uniform -- though rapid -- manner. The southernmost 1,500-ft of the fill (i.e., from about 5,500 to 7,000 ft south of the inlet appears to have exhibited some additional end-effect retreat. Figure B-6: MHW Shoreline Position pursuant to 1989 Beach Nourishment Project. B-41. More specifically, the mean high water shoreline along the 1989 John U. Lloyd project retreated at a nominal, average rate of about 16 ft/yr over period from August 1989 to August 1998. The average retreat rate nearest the south jetty exceeded 35 ft/yr while reaches further south, along the center portions of the fill receded at about 9 to 11 ft/yr, on average. The highest rates of recession occurred between the inlet and R-89 during the project's first two years. These rates, which include equilibrium effects, were as high as 35 to 55 ft/yr. The average shoreline change rates as computed with available beach profile survey data are summarized in Figure B-7. B-42. It is noted that the shoreline recession rate continually decreased over the life of the project. This is most likely due to the continual loss of sandy littoral material from the beach fill project. As the beach fill eroded, the amount of sand material available for transport decreased thus the apparent shoreline change rate as measured with beach profile survey data also decreased. Planform equilibration of the beach fill may also be a contributor to the observed reduction in sand loss rates as the beach fill matured. Figure B-7: Shoreline change rates following 1989 beach nourishment. B-43. Volume changes in John U. Lloyd from May 1989 are illustrated in Figure B-8 with the 1989 record representing the August fill of approximately 0.69 Mcy. Volume changes between depth contours have been considered in an attempt to recognize an equilibrium response of the beach. B-44. Figure B-8 suggests that during the first year of the project large amounts of sediment were removed from the local system at all depths out to –16 feet (NGVD). First year losses between R-86 and R-93 were approximately 0.2 Mcy. Prior to October 1993, volume losses can be seen across the entire profile indicating little sediment transport offshore. Post 1993 calculations suggest accretion below the –6 foot contour with volume reduction continuing, now at a slower rate, above the same contour. As of August 1998, only about one-third
of the original fill volume remains in place from the August 1989 John U. Lloyd beach nourishment, approximately 230,000 cy. Figure B-8: Volumetric change along John U. Lloyd shoreline since May 1989. B-45. <u>John U. Lloyd South Shoreline and Dania (R-94 to R-101)</u>. The shoreline along the southern end of John U. Lloyd State Park and Dania (R-94 and R-101) has never been nourished with a beach fill. As a result, only limited beach profile survey data are available for this section of shoreline. Typically, profiles R-94 to R-98 have been surveyed independently of R-98 to R-101. For purposes of discussion, these profiles have been referenced together (as R-94 to R-101) because they share a lack of prior beach fill placement. Inconsistent survey data make graphical comparisons of the two sub-reaches impractical. Therefore, only historical shoreline locations between R-94 and R-98 are presented in Figure B-9. Maintaining survey consistency, shoreline positions from R-98 to R-101 are presented in the following section of this report. B-46. Judging from available measurements, there appear to be few significant long-term trends in shoreline position. The shoreline along this portion of Segment III is considered to be relatively stable. Figure B-10 depicts the annual rate of MHW shoreline change since 1979. It can be seen that the shoreline change rate between R-94 and R-98 is fairly close to zero and is currently eroding at a rate of less than six inches per year. The shoreline from R-98 to R-100 has historically behaved in a manner consistent with aforementioned sections of Segment III, as shown in the following section of this report. Figure B-9: The MHW shoreline location between R-94 and R-98. Figure B-10: MHW shoreline change rate between R-94 and R-98. B-47. <u>Hollywood/Hallandale Shoreline (R-101 to R-128)</u>. The most recent beach renourishment project along Hollywood/Hallandale was constructed between March and August 1991. This project included the placement of about 1.16 million cubic yards of sand along about 5.2 miles of shoreline. Figure B-11 illustrates the changes in shoreline positions subsequent to the construction of this project. Figure B-11: Hollywood/Hallandale shoreline positions following 1991 nourishment. B-48. Much like the previously discussed 1979 beach fill, the initial 1991 fill width along the project shoreline was not uniform; thus, the project experienced significant planform equilibration during the first 12 months following construction. It was not until about August 1992 that the project began to recede more or less uniformly along the entire reach. To demonstrate this, shoreline positions following project construction are shown in Figure B-12. Tracking the shoreline positions through time indicates extreme fluctuations immediately following project construction. Changes clearly appear less erratic in October 1993 where the average rate of recession is approximately 1-3 ft/yr with a fairly low deviation. With a limited number of exceptions, the MHW shoreline has currently eroded near or landward of its pre-construction position throughout this reach with heavy areas of sand loss occurring around R-101 and R-123. Figure B-12: Shoreline positions following 1991 Hollywood/Hallandale nourishment. B-49. Remaining fill volume calculated after the 1991 fill is shown in Figure B-13. Again, volumes have been presented between specific elevation contours out to a depth of -16 feet (NGVD). Data show sediment immediately accreting offshore in depths between -6 and -12 feet. As of August 1998, 49 percent of the total original fill volume remains above the -16 ft contour in Hollywood/Hallandale. This represents an estimated 568,400 cubic yards of sediment. As previously discussed, many areas of this reach have eroded to or are now landward of the pre-project MHW shoreline. This becomes more apparent in Figure B-13 where, on average, nearly all of the volume between +10 and 0 feet has been lost and over 150,000 cy of pre-construction beach have been eroded between 0 and -6 feet. Estimates also indicate offshore accretion of about 360,000 cy between the -12 and -16 foot contours since 1991. ## 1991 Hollywood/Hallendale 1991 Beach Fill 1.2 Volume (Mcy) Total Fill (Between +10 and -16) 0.8 0.6 0.4 0.2 0 O_{C/-93} Aug-91 Feb-92 Aug-92 0.5 Volume (Mcy) Between +10 and 0 feet 0.4 0.2 0.1 Aug.91 Feb.92 Aug.92 O_{C/L-93} 0.4 Volume (Mcy) Between 0 and -6 feet 0.3 0.2 0.1 -0.1 -0.2 O_{C/-93} Aug.97 Feb.92 Aug.92 A49-98 0.5 Volume (Mcy) Between -6 and -12 feet 0.4 0.3 0.2 0.1 0 O_{C/-93} A49-98 Aug. 97 Feb. 92 Aug. 92 0.5 Volume (Mcy) Between -12 and -16 feet 0.4 0.3 0.2 0.1 0 O_{C/-93} Aug. 97 Feb. 92 Aug. 92 **Remaining Fill Volume** Figure B-13: Performance of 1991 Hollywood/Hallandale Beach Nourishment Project. - B-50. Figure B-14 summarizes volumetric changes along the entire Segment III shoreline. The broken line on the graph represents all available data following 1989 and 1991 beach construction projects. In an attempt to isolate equilibrium effects during the first 12-months following construction, a composite of volumetric change rates excluding those computed immediately after construction was developed and shown as a solid line below. Also, only data that were collected during similar annual seasons are presented to minimize the effects of seasonal variations in shoreline recession computations. This compilation more adequately identifies long-term performance trends of constructed nourishment projects and provides a foundation for the design of future works. In northern John U. Lloyd, actual recession is likely much higher than noted in Figure B-14 due to the limited sand volume currently available for transport. In considering the present sand deficit along northern John U. Lloyd, the most recent volume change data was not included during final recession estimates. - B-51. Overall, the average annual shoreline change rates measured from the 1989 JUL and 1991 Hollywood/Hallandale beach fill project suggest that the northern 8,100 feet of the John U. Lloyd shoreline losses about 6.5 cy/ft or 53,000 cy of sand lost each year. Considering the typical berm and depth of closure elevations along this reach of shoreline, the associated annual shoreline retreat rate is approximately –9.0 feet per year. Along the southern 4,000 feet of the John U. Lloyd shoreline, the area is generally accretional with an annual net gain of about 7,600 cubic yards. The Dania shoreline is only mildly erosional, losing about 600 cubic yards per year. Hollywood/Hallandale on the other hand continues to be erosional with an average alongshore sand loss rate of about 2.8 cy/ft per year. This is equivalent to an overall sand loss rate of 77,000 cy per year along the 27,600 feet of Hollywood/Hallandale shoreline. The shoreline recession rate associated with these sand loss estimates in Hollywood/Hallandale averages about -4 ft/yr. - B-52. The beach monitoring data collected as part of the 1989 and 1991 Segment III beach fill projects represent shoreline change associated with healthy beach conditions where a sufficient supply of sand was available for natural rates to be realized. It is argued that these rates more appropriately represent natural shoreline change conditions than those reported in the authorizing documents. Those latter rates were formulated from information collected during a period when the beach was in a highly eroded condition and armored with walls. The rates computed with the most recent shoreline change data are more consistent with those reported from the Segment II shoreline than those presented in the authorizing documents. - B-53. In all, the beach change data for the period between 1989 and 1998 suggests that the Segment III shoreline losses about 123,000 cubic yards of sand per year (see Table B-6). The reaches of the Segment III shoreline along which beach fill projects have been previously constructed lose approximately 130,000 cy/yr of sand each year. Table B-6: Beach volume change rates for the Segment III shoreline 1989-1998. | | Length of Reach | Volume
Change Rate | Volume
Change | Shoreline
Change | |------------------------|-----------------|-----------------------|------------------|---------------------| | Reach | (ft) | (cy/ft/yr) | (cy/yr) | (ft/yr) | | John U. Lloyd - North | 8,100 | -6.5 | -53,000 | -9.0 | | John U. Lloyd - South | 4,000 | +1.9 | 7,600 | +2.5 | | Dania | 3,200 | -0.2 | -600 | -0.5 | | Hollywood / Hallandale | 27,500 | -2.8 | -77,000 | -4.0 | | TOTAL | 42,800 | | -123,000 | | Figure B-14: Summary of volumetric change rates for Segment III shoreline. B-54. In summary, previously constructed projects with renourishment have been successful in maintaining a wide protective and recreational beach along sections of the Segment III shoreline. There have been several areas along the Segment III shoreline, however, that have continued to experience heavily erosive conditions. These areas include the portion of shoreline extending about 3,000 feet South of the Port Everglades jetty (R-86 to R-89), the northern end of Hollywood (R-101 to R-102), and a localized area in southern northern Hollywood in the vicinity of the Diplomat Hotel (R-121 to R-124). Unique problems afflicting the aforementioned reaches present difficulties in developing specialized, effective engineering solutions. ## PORT EVERGLADES IMPACTS - B-55. Port Everglades Entrance appears to act as a complete littoral sediment sink. That means that it not only prevents the *net* transport of sediment southward across the inlet, but it also captures northerly transported sand *from* Segment III. The inlet's littoral impact is primarily manifest as shoreline recession south of the inlet. - B-56. It is conservatively assumed that approximately 58,000 to 73,000 cubic yards of sand per year approach Port Everglades along the southern reaches of Segment II (Olsen Associates, Inc. and Coastal Planning
and Engineering, Inc., 1998). Instead, the existing influx of sand to Segment III is generally thought to be zero. That is, the 58,000 to 73,000 cy/yr of sand that would normally be expected to reach Segment III is diverted to updrift impoundment, offshore, and into Port Everglades. At least for the period 1979 to 1993, it appears that about half of the material is diverted offshore and/or to the seabed, and half is diverted to impoundment. - B-57. The inlet does not only interrupt net drift from the north; it also acts as a sink to sand that is transported from the downdrift beach toward the inlet. There are insufficient survey data to determine this quantity directly; however, a reasonable value is inferred from the results of the refraction/diffraction and GENESIS analyses. The refraction/diffraction and sand transport potential analysis demonstrates that the *potential* for northerly transport into Port Everglades was approximately 10 percent of the southerly-directed net potential sand transport immediately south of Port Everglades. The latter is about 50,000 cy/yr; therefore, the net northerly drift potential directed toward Port Everglades from the south is about 5,000 cy/yr. That is, the presence of Port Everglades has created the *potential* for the inlet to sink 5,000 cy/yr of transport from the Segment III beaches during transport reversals. - B-58. The annual impact from Port Everglades Entrance is the sum of the inlet's interruption of net southerly transport and the sink effect upon the reversal transport from the south; i.e., 58,000 to 73,000 cy/yr (interruption of net southerly drift to the downdrift beach) + 5,000 cy/yr (sink effect to transport from the downdrift beach) 63,000 to 78,000 cy/yr (net inlet impact) That is, the inlet's potential total impact to the littoral system is between about 63,000 and 78,000 cy/yr. The magnitude of total inlet impact is expected to be the same as existing conditions at the time of the 2001 project construction. No significant changes would be expected in the absence of engineering sand bypassing at the inlet. ## **CROSS-SHORE SEDIMENT TRANSPORT** B-59. Cross-shore sediment transport characteristics for Broward County beaches were estimated using the Storm Induced BEAch CHange model, SBEACH (Larson and Kraus, 1989). SBEACH simulates beach profile changes that result from varying storm waves and water levels. These beach profile changes include the formation and movement of major morphological features such as longshore bars, troughs, and berms. SBEACH is an empirically-based numerical model, which was formulated using both field and the results of large-scale physical model tests. Input data required by SBEACH describes (1) the storm being simulated, and (2) the beach of interest. Basic requirements include time histories of wave height, wave period, and water surface elevation, as well as beach surveys and median sediment grain size. B-60. SBEACH calculates the cross-shore variation in wave height and wave- and wind-induced setup at discrete points along the profile from the seaward boundary to the shoreline. The model calculates the limit of wave run-up in order to define the landward boundary of profile change. Profile changes are calculated at each model time step by solving for conservation of mass. An explicit finite-difference scheme is used for this solution. B-61. The extent of beach erosion is often quantified in terms of beach recession. Throughout this discussion, recession is defined as the horizontal distance from the mean high water mark on the pre-storm profile to the landward most point where the vertical difference in pre- and post-storm profiles equals 0.5 feet. This definition is presented graphically in Figure B-15. Figure B-15: Beach recession, R, definition sketch. - B-62. Basic assumptions underlying SBEACH simulations are that (1) breaking waves and variations in water level are the major causes of sand transport and profile change, (2) cross shore sand transport takes place primarily in the surf zone, (3) conservation of mass dictates that the amount of material eroded must equal the amount deposited, (4) median sediment diameter on the profile is reasonably uniform across shore, (5) influence of structures blocking longshore transport is small, and the shoreline is straight (i.e., longshore effects are negligible during the term of simulation), and (6) linear wave theory is applicable everywhere along the profile without shallow-water wave approximations. - B-63. SBEACH has significant capabilities that make it useful for quantitative studies of beach profile response to storms. It accepts as input a pre-storm beach profile (either idealized or surveyed), time series of water level as produced by storm surge and tide, time series of wave height and period, a representative sediment grain size, three transport parameters and two characteristic slope parameters. The model allows for variable cross shore grid spacing, wave refraction by specifying wave direction, randomization of input wave to better represent forcing conditions in the field, and water level setup due to input wind parameters. Output data consists of a final calculated profile at the end of the simulation, simulated profiles at intermediate time steps, intermediate and maximum wave heights, intermediate and maximum total water elevations plus setup, maximum water depth, volume change and a record of various coastal processes that may occur at any time-step during the simulation (accretion, erosion, overwash, boundary-limited runup, and/or inundation). - B-64. SBEACH requires the calibration of three empirical parameters: (1) the transport rate coefficient (K), (2) the transport rate slope dependence (ϵ), and (3) the transport rate decay factor (λ). Calibration of these parameters requires measurement of pre- and post-storm profiles at the site where the model is used. - B-65. Site specific pre- and post-storm beach profile data for the Broward County Segment III shoreline are not available. However, previous efforts have produced accepted calibration coefficients for other areas of the Eastern Florida coast. These shorelines are located in Martin County, Brevard County, and the Ponce de Leon Inlet area in Volusia County. Of the three, only the Martin County study was calibrated using measured pre- and post-storm profile data. Default calibration coefficients used in SBEACH were developed with water level, wave, and beach change data collected at Duck, North Carolina. In this study, it is not assumed that storm-induced beach change at Duck, North Carolina is representative of that in South Florida. Instead of relying solely upon the default values for this study, however, a sensitivity analysis comparing previous calibration efforts with the default values was conducted. - B-66. During the sensitivity analysis, only the coefficients, K, λ , and ϵ were varied. These coefficients were varied as indicated in Table B-7. Each set of calibration coefficients were run and compared using one extratropical and two tropical storm simulations, herein named extratropical storm number 6, HURDAT storm number 194 and HURDAT storm 353 respectively. Extratropical storm number 6 occurred on November 23, 1980 and was modeled with a tidal phase of 270 degrees. Tropical storm 194 occurred on October 9, 1909 and was also modeled with a tidal phase of 270 degrees. Tropical storm 353 made landfall on August 29, 1935 and was modeled using a tidal phase of 180 degrees. Each storm was modeled impacting the three composite profiles developed for the Segment III study area. Reach 1 represents the shoreline from R-086 to R-099. Reach 2 represents the shoreline from R-100 to R-104, and Reach 3 represents the shoreline from R-105 to R-128. The development of these profiles is discussed later in this report. B-67. The results of the sensitivity analysis including the corresponding recession distances are shown in Table B-7. The location at which the recession distances were measured is the +1.64 ft NGVD elevation. This elevation is considered the natural mean high water line along the study area shoreline. B-68. Inspection of Table B-7 indicates little sensitivity of MHW recession to the various calibration coefficients used in this analysis. The deviation about the average recession averages 4.6 feet. The default calibration coefficients produced the greatest amount of MHW recession, while the martin county coefficients produced the least. The conservative nature of the Martin County coefficients combined with the fact that they were calibrated using pre- and post-storm profiles make them the best choice for the purposes of project justification. Table B-7: Sensitivity analysis for SBEACH transport coefficients. | | | Dista | Distance from pre-storm MHW to landward limit of 0.5 foot erosion. (feet) | | | | | | |-------|-------|---------|---|---------|--------|----------|---------|--| | Reach | Storm | Default | Ponce | Brevard | Martin | AVG (ft) | SD (ft) | | | | #6 | 0 | 0 | 0 | 0 | 0 | 0 | | | 1 | 194 | 162.9 | 174.7 | 167.7 | 152.3 | 164.4 | 9.4 | | | | 353 | 169.9 | 166.0 | 163.2 | 163.8 | 165.7 | 3.0 | | | | #6 | 43.3 | 41.0 | 41.5 | 41.4 | 41.8 | 1.1 | | | 2 | 194 | 188.3 | 186.0 | 186.9 | 185.9 | 186.8 | 1.1 | | | | 353 | 224.9 | 214.6 | 206.4 | 214.2 | 215.0 | 7.6 | | | | #6 | 41.7 | 39.1 | 38.8 | 38.5 | 39.5 | 1.5 | | | 3 | 194 | 144.0 | 159.9 | 159.1 | 133.8 | 149.2 | 12.6 | | | | 353 | 142.2 | 136.0 | 130.0 | 138.4 | 136.6 | 5.1 | | | Adjusted Calibration Coefficients | | | | | | | | |--------------------------------------|----------|----------|----------|----------|--|--|--| | Project Default Ponce Brevard Martin | | | | | | | | | K (m ⁴ /N) | 1.75E-06 | 1.75E-06 | 1.70E-06 | 1.50E-06 | | | | | EPS (m ² /s) | 0.002 | 0.001 | 0.001 | 0.0015 | | | | | LAMM (m ⁻¹) | 0.4 | 0.5 |
0.5 | 0.4 | | | | - B-69. <u>Production Model Runs</u>. The cross-shore sediment transport analysis procedure involved the use of the SBEACH model to perform multiple simulations of historical tropical and extratropical storms that have influenced the project shoreline. Recent Broward county beach profile surveys (August 1998) were used to represent pre-storm conditions. The study area was divided into three reaches, based on morphological dissimilarities. Representative beach profiles, R86, R100, and R105, were generated to represent pre-storm conditions along each reach. Simulations of all historical storms were then executed for each composite profile. This resulted in a comprehensive database of site-specific tropical and extratropical storm recession information. This database was then used to generate beach recession versus frequency of occurrence relationships, which are discussed in the following paragraphs. - B-70. Joint-Probability Analysis of Storm-induced Beach Recession. Proposed shore protection measures must be subjected to a benefit-cost analysis in order to assess whether Federal participation in the project is appropriate. Primary benefits are typically quantified in terms of the reduction of storm-induced damages to existing property and/or structures. In order to quantify those benefits, one must estimate a) the damage potential which exists without the proposed protection measures (i.e., for existing conditions), and b) the damage potential which exists with shore protection measures in place. Benefits are expressed as the reduction in storm-induced damages resulting from the presence of the shore protection measures. In order to account for risks and uncertainties inherent to the analysis procedure, methods were required in the form of recession versus frequency of occurrence relationships. The Empirical Simulation Technique (EST) (Borgman et al., 1992), was selected as the joint-probability analysis tool used to establish those relationships. The beach recession analysis procedure can be described by applying the following major tasks: - 1. Identify storm events that have impacted the study area. - 2. Construct or obtain the water surface elevation and wave field hydrographs characteristic of each of the identified storms while in the vicinity of the study site. - 3. Apply the numerical model, SBEACH, to estimate the beach recession associated with each of the storm events. - 4. Construct EST input data files using descriptive storm parameters and calculated recession values. - 5. Use the EST to generate multiple repetitions of multi-year scenarios of storm events and their corresponding beach erosion confidence limits. - 6. Apply the resulting recession-frequency curves as input to an appropriate economics based model for computation of damages, costs, and benefits. - B-71. The initial step in any storm-induced recession/frequency analysis is identification of all historical storms that have impacted the area of interest. For Atlantic coast sites, such as Broward county, the shoreline is subjected to both tropical cyclones (tropical depressions, tropical storms, and hurricanes) and extratropical storms (northeasters). While tropical storms are often characterized by very high wind, wave, and surge conditions, the longer duration of extratropical storms can result in beach erosion of equal or greater magnitude than the erosion caused by storms of tropical origin. Once the historical storms of interest are identified, corresponding storm surge hydrographs and wave condition time series must be extracted from appropriate data sources. For this application, those data sources consisted of the DRP storm surge database and the WIS hindcast wave database. B-72. Selection of tropical cyclones to be simulated begins with identification of the DRP station that lies nearest to the site in question. As explained previously, DRP Station 442 was chosen. The tropical surge database indicated that 12 tropical cyclones have significantly impacted the area represented by station 442. For this application, a significant influence implies the storm resulted in a surge of at least 0.5 meters at the study site. The 12 storms identified for the Broward county area are listed in Table B-8. Individual storm tracks and maximum surge elevations at all nearshore stations are available in the tropical cyclone database summary report (Scheffner et al., 1994). An estimate of the frequency of occurrence of tropical cyclones which impact the project shoreline can be computed as: 12 events/104 seasons = 0.12 events per year. This can be expressed as a recurrence frequency of roughly one tropical cyclone every eight years. B-73. The DRP extratropical storm database contains 16 winter seasons of storm surge and current hydrographs from 1977 to 1993. Extratropical storms were identified by visual inspection of each season's storm surge hydrographs at DRP station 442. These hydrograph inspections, combined with a general estimation of the frequency of extratropical storms along the east coast of Florida, and knowledge concerning the more prominent storms, resulted in a 0.085-meter threshold magnitude of the storm surge. In other words, individual extratropical storms were identified as those events characterized by deepwater surge magnitudes that equaled or exceeded 0.085 meters. Analysis of all 16 extratropical storm seasons resulted in a compilation of the storms listed in Table B-9. It also identifies the approximate date of occurrence and magnitude of the peak storm surge elevation, relative to mean sea level (msl). An estimate of the frequency of occurrence of extratropical storms which impact the project site can be computed as: 16 events/15 seasons = 1.07 events per year. B-74. In summary, the selection of storm events from the available databases resulted in the identification of 12 tropical cyclones and 16 extratropical storms that have influenced Broward county beaches. The tropical storm database encompasses those storms that occurred during the 104-year period from 1886 through 1989. The extratropical storm database includes 15 years of data, from 1977 through 1993. Estimated frequencies of occurrence for tropical cyclones and extratropical storms that impact the project shoreline are 0.12 and 1.07 storms per year, respectively. Table B-8: Tropical storms with influence on Broward County. | HURDAT
STORM
NUMBER | DATE | STORM
NAME | |---------------------------|------------|---------------| | 112 | 3-Aug-1889 | | | 127 | 4-Aug-01 | | | 189 | 6-Oct-09 | | | 194 | 9-Oct-10 | | | 276 | 11-Sep-26 | #6 | | 292 | 6-Sep-28 | #4 | | 296 | 22-Sep-29 | | | 353 | 29-Aug-35 | | | 357 | 30-Oct-35 | | | 473 | 18-Sep-48 | #7 | | 597 | 29-Aug-60 | DONNA | | 629 | 20-Aug-64 | CLEO | Table B-9: Extratropical storms with influence on Broward County. | | aropi o | DATE | MAXIMUM | |--------|----------------|-----------|------------| | STORM | STORM | | SURGE | | NUMBER | SEASON | | HEIGHT (m) | | | 1977-1978 | NO STORMS | | | 1 | 1978-1979 | 29-Dec | 0.087 | | 2 | | 17-Feb | 0.094 | | 3 | 1979-1980 | 20-Jan | 0.091 | | 4 | | 8-Feb | 0.091 | | 5 | | 4-Mar | 0.096 | | 6 | 1980-1981 | 23-Nov | 0.121 | | 7 | | 13-Feb | 0.099 | | | 1981-1982 | NO STORMS | | | | 1982-1983 | NO STORMS | | | 8 | 1983-1984 | 25-Dec | 0.087 | | 9 | | 1-Jan | 0.13 | | 10 | | 22-Feb | 0.105 | | 11 | 1984-1985 | 8-Nov | 0.088 | | 12 | | 24-Nov | 0.111 | | | 1985-1986 | NO STORMS | | | | 1986-1987 | NO STORMS | | | | 1987-1988 | NO STORMS | | | 13 | 1988-1989 | 10-Mar | 0.139 | | | 1990-1991 | NO STORMS | | | 14 | 1991-1992 | 30-Oct | 0.094 | | 15 | 1992-1993 | 16-Dec | 0.09 | | 16 | | 19-Mar | 0.104 | B-75. Storm Surge and Wave Hydrograph Development. The second major step of the EST procedure is construction of the appropriate storm surge and wave field hydrographs. The total storm-induced surge elevation (prior to inclusion of wave and wind setup) can be divided into two major components, storm surge and astronomical tide. The tropical and extratropical simulations that generate the storm surge characteristics contained in the DRP database did not include consideration of tides at the time of the storm event. Storm surge modeling was performed with respect to mean sea level. Total surge elevation and corresponding beach recession estimates can be significantly influenced by the magnitude and phasing of the tidal component. Tidal influence was accounted for by assuming that each storm event had an equal probability of occurring during the tidal cycle. For this analysis, that assumption was simplified by allowing the onset of the storm conditions to coincide with four individual tidal phases. Those phases were designated as 0 degrees (high tide), 90 degrees (msl during peak flood), 180 degrees (low tide), and 270 degrees (msl during peak ebb). Tidal components characteristic of the project site were obtained from the DRP database for computation of tidal elevations. The result of combining storm surge and tidal components of the total surge elevation is a four-fold increase in the number of individual storms in the tropical and extratropical databases. For example, each individual storm in the original 12-storm database was represented by four storms that differ solely with respect to tidal phasing. Therefore, the tropical cyclone database was expanded from 12 storms to 48 storms, and the extratropical database grew from 16 storms to 64 storms. B-76. It should be noted that the time histories of the storms in question were limited in duration to the periods in which the storms were influencing the project beaches. The appropriate hydrograph duration for tropical and extratropical storms was determined to be 43 hours and 147 hours respectively. Extratropical hydrographs were generated with a 3-hour time-step to accomplish compatibility with the hindcasted wave data. Tropical storm hydrographs were generated using a 1-hour timestep. B-77. Wave
conditions corresponding to each of the extratropical storms were obtained from the WIS hindcast database. Those wave height and period hydrographs represented deepwater wave conditions at WIS Station A2009. Wave conditions characteristic of tropical cyclones were computed in accordance with procedures specified in the Shore Protection Manual (USACE, 1984). Storm track direction, and minimum height and period values were specified based on information from the WIS summary tables (Hubertz et al., 1993) for Station A2009. B-78. <u>Application of SBEACH Model</u>. The third step in the EST procedure is the application of the cross-shore sediment transport model to compute storm-induced erosion. For each storm simulation, wave transformation was computed with algorithms included in SBEACH. For this application, profiles extended approximately 10,000 feet offshore where depths ranged from about 140 to 15 feet. Wave transformations were performed using methods described for random waves impinging upon a non-monotonic profile (Larson and Kraus, 1989). B-79. A comparative analysis of beach profile surveys indicated that the project shoreline could be divided into three reaches. SBEACH simulations of the 48 tropical and 64 extratropical cyclones were then performed for each reach. The estimated beach recession corresponding to each of these storms was archived for input into the EST joint probability analysis. - B-80. <u>EST Input Development</u>. The fourth step in the empirical simulation procedure involves preparation of the EST input files. These files contain input vectors, response vectors, and frequency of storm occurrence parameters. The values of the input parameters reflect the storm intensity. The response vector, in this application, quantifies the beach recession resulting from a given storm; and the storm frequency parameters are used to dictate the occurrence of extratropical and tropical storms throughout the multi-year life cycle analysis. - B-81. The characteristics of individual tropical storms were defined as: (a) tidal phase, (b) closest distance from the eye to the project site, (c) direction of propagation at time of closest proximity, (d) central pressure deficit, (e) forward velocity of the eye, (f) maximum wind speed, and (g) radius to maximum winds. As noted, the response to each storm was defined as the beach recession modeled by SBEACH. The frequency of occurrence of tropical events that impact the project beaches was previously estimated at 0.12 events per year. This corresponds to one event every 8.3 years. - B-82. Input vectors describing extratropical storms were defined as: (a) tidal phase, (b) storm duration, (c) maximum surge elevation, (d) wave height, and (e) wave period. The response vector was, of course, beach recession; and the frequency of occurrence of extratropical storms was previously estimated at 1.07 events per year. - B-83. <u>EST Execution</u>. The fifth step of the EST is the execution of empirical simulation procedures to generate multiple repetitions of multi-year scenarios in which storm events may occur. For this application, 100 repetitive simulations of a 200-year period of storm activity were performed. Simulations of extratropical and tropical storm histories were performed separately. For each simulation, a 200-year tabulation was generated to include the number of storms that occurred during each year and the corresponding beach recession. This information provides the basis for calculation of return periods associated with various degrees of beach recession. - B-84. The final step in the EST procedure is analysis of results and presentation of those results in a format suitable for subsequent probabilistic analyses. In this case, the EST results were used as input for an economic evaluation of the impacts of beach recession. The economic model estimates damage and repair costs (related to storm-induced beach recession) that would be incurred over a multi-year period if no project improvements were constructed. The economic model makes no distinction between extratropical and tropical storms; therefore, the tropical and extratropical EST results were combined to generate a single storm-induced recession versus frequency of occurrence relationship. The following algorithm was used to accomplish this combination of extratropical and tropical results: For a given recession value: $T_c = (1/T_t + 1/T_e)^{-1}$ Where: T_c denotes return period corresponding to the chosen recession. T_t represents the tropical storm return period corresponding to the chosen recession. T_e equals the extratropical storm return period corresponding to the chosen recession. B-85. As expected, due to their greater frequency of occurrence, the extratropical storms dominate the results corresponding to lower return periods. The greatest recession values were characteristic of the most severe tropical cyclones (i.e., hurricanes). Return periods associated with levels of combined tropical and extratropical storm-induced beach recession are provided in Table B-10. Table B-10: Recession vs. frequency of occurrence results. | Return | REACH | | | | |-------------|--------------|----------------|--|--| | Period (vr) | R-86 to R-94 | R-101 to R-128 | | | | 200 | 187 | 177 | | | | 100 | 171 | 160.5 | | | | 50 | 148 | 129 | | | | 20 | 103 | 90 | | | | 10 | 65 | 80 | | | | 5 | 52 | 71 | | | | 2 | 41 | 58.5 | | | | 1 | 26.5 | 33 | | | B-86. <u>Summary of Cross-Shore Transport Analysis</u>. The preceding information was provided to summarize how EST procedures were applied to this probabilistic analysis of cross-shore sediment transport in Broward County. This application generated frequency of occurrence relationships for storm-induced beach recession along Segment III of the Broward County shoreline, as tabulated above. The beach recession-frequency relationships were subsequently utilized as input to economic model for quantification of recession related damages to shorefront properties. ## LONGSHORE SEDIMENT TRANSPORT B-87. Longshore sand transport along the Segment III shoreline is the dominant mechanism for shoreline change. Longshore sand transport rates are highly variable due to the presence of the Port Everglades Entrance jetties, irregularities in the elevation of the nearshore reef structure and the orientation of the shoreline. Additional variabilities in the longshore sand transport rates have been due to end effects at the terminus of past beach fills. At those locations, specifically at the south end of the John U. Lloyd and northern end of the Hollywood/Hallandale projects, beach fill performance has been poor due to high alongshore sand loss rates. B-88. For purposes of formulating project modifications necessary to improve beach fill performance in Segment III, the Generalized Model for Simulating Shoreline Change (GENESIS) model (Hanson and Kraus, 1989) is used to predict shoreline changes and sediment transport quantities, with and without project modifications. The GENESIS model provides a numerical method for determining long-term shoreline change on an open coast in response to spatial and temporal variations in longshore sediment transport. The model can be calibrated to site-specific conditions which are defined by shoreline surveys, sediment budget analyses, wave conditions, offshore bathymetry, and the presence of coastal armoring, beach fills, groins, offshore breakwaters, and inlet sand bypassing operations. Locations of the shoreline, coastal structures, and beach fills are referenced to a baseline that defines the orientation of the modeling grid. Longshore transport rates are calculated at the cell boundaries utilizing methodology described in the Shore Protection Manual. Site-specific wave data (period, wave height, and direction) are used in concert with the longshore transport equation (USACE, 1984) at incremental time steps to simulate shoreline changes due to the addition or removal of sand from a discrete section of shoreline. The discrete shoreline sections are represented by model grid cells. The computed rate of longshore sand transport and shoreline change is calibrated to the input wave data and historical shoreline change through two calibration coefficients (K₁ and K_2). # **Shoreline Change Model (GENESIS)** B-89. Overview. The purpose of the modeling exercise is to evaluate the potential for alongshore shoreline changes along the Segment III shoreline and simulate the effects of proposed project modifications. The proposed modifications include beach fill tapers at the southern end of the John U. Lloyd and the northern end of the Hollywood/Hallandale design beach section and the a groin field at the northern end of the John U. Lloyd Beach State Recreation Area shoreline. Additionally, the potential benefits of mechanical sand bypassing at Port Everglades to the Segment III sediment budget is evaluated with the calibrated GENESIS model. B-90. To accomplish these modeling tasks with a version of GENESIS that is limited to 200 grid cells, two separate GENESIS domains were developed. The first model was formulated to represent the entire John U. Lloyd Beach State Recreation Area shoreline. This model was intended to accurately simulate shoreline change along the groin field shoreline and along the shoreline immediately downdrift of the groin field. The second model represents the entire Hollywood/Hallandale shoreline plus about 5,000 feet north and south of that area. This model consists of larger grid cell widths. The wider grid cells allow for the entire Segment III shoreline to be represented with the 200-grid cell model. The input wave data were common for both model domains. Detailed model calibration and verification simulations were performed with the John U. Lloyd model. The calibration results were modified slightly for the Hollywood/Hallandale model during an independent verification of that model. ## Offshore Wave Data B-91. Offshore wave
data used to represent typical wave conditions at the project site were derived from WIS hindcast wave data. Hindcast data from WIS Station A2009 were used to represent local wave conditions. These data, which are available from the CEDRS database were prepared by the U.S. Army Corps of Engineers Coastal Engineering Research Center (CERC) (Hubertz et al., 1993). These hindcast wave data represent wave conditions offshore of the Broward County Segment II shoreline for the period between 1956 and 1995. It is noted that the wave hindcast data for the period between 1956 and 1975 do not include tropical weather systems. This database comprises 40 years of hindcast wave data from atmospheric pressure and wind speed records over that time period. B-92. The two 20-year times series were processed using wave analysis utilities included in the Shoreline Modeling System (SMS) that accompanies the GENESIS model. The time series were converted from their reported offshore depth and orientation (720 ft, 0 degrees true north; Phase II) to a nearshore depth of 145 ft and a shoreline orientation of 2 degrees E of N (Phase III). This procedure, which was accomplished with the SMS utility, WAVETRAN, aligned the wave data with the subject shoreline and the subsequent nearshore wave refraction grid. The resultant time series were then processed using the utility, RCRIT, to eliminate wave events in the time series that either were traveling away from the shoreline or were too small to generate significant longshore sand transport. The criteria used to eliminate wave events from the time series follows the method of Hanson and Kraus (1991). Both the primary and secondary components of the wave time series were retained throughout the analyses. B-93. The conditioned offshore wave time series were analyzed to determine the potential longshore sediment transport rates for each of the forty years or record. This procedure included the use of the SEDTRAN utility that estimates the annual northerly, southerly, net and gross sediment transport potentials at a local project site. The results of this analysis are summarized in Table B-11. Table B-11: Uncalibrated longshore sand transport rates 1976-1995 (cy/yr). | | | I | I | | |---------|-----------|---------|-----------|-----------| | YEAR | NORTH | SOUTH | NET | GROSS | | 1976 | 1,400,000 | 190,000 | 1,210,000 | 1,590,000 | | 1977 | 1,100,000 | 190,000 | 910,000 | 1,290,000 | | 1978 | 1,300,000 | 180,000 | 1,120,000 | 1,480,000 | | 1979 | 1,600,000 | 710,000 | 890,000 | 2,310,000 | | 1980 | 940,000 | 260,000 | 680,000 | 1,200,000 | | 1981 | 1,200,000 | 280,000 | 920,000 | 1,480,000 | | 1982 | 600,000 | 340,000 | 260,000 | 940,000 | | 1983 | 860,000 | 410,000 | 450,000 | 1,270,000 | | 1984 | 1,700,000 | 250,000 | 1,450,000 | 1,950,000 | | 1985 | 1,200,000 | 260,000 | 940,000 | 1,460,000 | | 1986 | 1,100,000 | 260,000 | 840,000 | 1,360,000 | | 1987 | 870,000 | 370,000 | 500,000 | 1,240,000 | | 1988 | 610,000 | 280,000 | 330,000 | 890,000 | | 1989 | 420,000 | 120,000 | 300,000 | 540,000 | | 1990 | 690,000 | 320,000 | 370,000 | 1,010,000 | | 1991 | 550,000 | 320,000 | 230,000 | 870,000 | | 1992 | 1,000,000 | 470,000 | 530,000 | 1,470,000 | | 1993 | 730,000 | 290,000 | 440,000 | 1,020,000 | | 1994 | 900,000 | 450,000 | 450,000 | 1,350,000 | | 1995 | 570,000 | 410,000 | 160,000 | 980,000 | | | | | | | | AVERAGE | 967,000 | 318,000 | 649,000 | 1,285,000 | | (CY/YR) | 707,000 | 310,000 | 312,000 | 1,200,000 | | | | | | | | LOW | 609,139 | 187,471 | 284,339 | 888,482 | | HIGH | 1,324,861 | 448,529 | 1,013,661 | 1,681,518 | ## **Nearshore Wave Data** B-94. Overview. Gradients in the longshore sand transport potential are related to alongshore variations in nearshore wave conditions. Nearshore wave conditions in the GENESIS model are represented at each time step by normalized refraction and shoaling coefficients created from the results of a grid-based refraction model. There are four steps required to formulate the nearshore wave conditions. The first includes the determination of representative wave conditions to be simulated in the refraction model. The second consists of compiling hydrographic data collected in the vicinity of the study site and developing the model computational grid. The third involves the execution of the refraction model for each representative wave condition. The final step requires review and selection of the appropriate computed breaking wave conditions along the entire refraction grid domain and creating the input nearshore wave file to be used by GENESIS. The details of each of these steps are briefly described below. B-95. Representative Wave Conditions. To minimize the number of required wave refraction/diffraction simulations, the 20-yr Phase III wave time series (1976-1995) was processed using the WHEREWAV utility in the SMS package. This procedure sorts the wave data into direction and period bins which then serve to "represent" each individual wave event in the time series. The individual wave conditions within each bin were compiled to determine the average wave height, period and direction for each bin. Table B-12 presents the resultant wave conditions (23 cases) used in the wave refraction modeling. The average wave heights were used in the following refraction/diffraction analysis, rather than unit wave heights as described in the GENESIS Workbook and System User's Manual (Gravens and Kraus, 1991), because it was necessary to determine actual wave heights at breaking. The resultant wave heights used in the preparation of the nearshore wave transformation file were then normalized using the average wave height in each bin to accommodate the GENESIS format. B-96. <u>Bathymetric Data and Grid Preparation</u>. The refraction/diffraction analysis requires a computational grid that represents the offshore bathymetry. The bathymetric grid was developed from several hydrographic data sets that have been collected along various portions of the study area. These include an August 1998 beach and nearshore survey by Broward County, a 1997 LIDAR and NOS (National Ocean Survey) survey of the offshore area immediate to Port Everglades, a 1993 hydrographic survey of the area south of Port Everglades conducted as part of the Coast of Florida Study, and a hydrographic survey of the area from Port Everglades to the Dade County Line conducted as part of the current investigation. Portions of each of these data sets were combined to formulate a representative hydrographic data set for the entire area of interest. Table B-12: Summary of nearshore wave events by angle and period band. | | | | | | | Average | Average | Average | |-----------|-------|--------|-------|--------|------------|---------|---------|---------| | Wave | | | | Number | | Wave | Wave | Wave | | Condition | Angle | Period | NSWAV | of | Percent | Angle | Height | Period | | Number | Band | Band | Key# | Events | Occurrence | (deg) | (ft) | (sec) | | 1 | 3 | 1 | 131 | 2364 | 2.0 | 47.2 | 2.0 | 3.8 | | 2 | 3 | 2 | 132 | 5518 | 4.7 | 49.2 | 3.1 | 5.5 | | 3 | 3 | 3 | 133 | 9441 | 8.1 | 51.7 | 3.1 | 7.6 | | 4 | 3 | 4 | 134 | 8762 | 7.5 | 49.9 | 2.5 | 9.5 | | 5 | 3 | 5 | 135 | 4591 | 3.9 | 44.6 | 2.1 | 11.4 | | 6 | 3 | 6 | 136 | 1060 | 0.9 | 39.3 | 2.0 | 13.3 | | 7 | 4 | 1 | 141 | 4161 | 3.6 | 23.6 | 1.9 | 3.9 | | 8 | 4 | 2 | 142 | 5343 | 4.6 | 24.3 | 3.9 | 5.5 | | 9 | 4 | 3 | 143 | 1953 | 1.7 | 25.0 | 6.7 | 7.3 | | 10 | 4 | 4 | 144 | 328 | 0.3 | 29.5 | 6.9 | 9.2 | | 11 | 4 | 5 | 145 | 448 | 0.4 | 34.5 | 1.3 | 11.5 | | 12 | 4 | 6 | 146 | 1976 | 1.7 | 33.9 | 1.6 | 13.5 | | 13 | 4 | 7 | 147 | 1146 | 1.0 | 30.1 | 1.5 | 15.4 | | 14 | 4 | 8 | 148 | 576 | 0.5 | 26.9 | 1.8 | 18.0 | | 15 | 5 | 1 | 151 | 5826 | 5.0 | 2.1 | 2.0 | 3.9 | | 16 | 5 | 2 | 152 | 7525 | 6.4 | 2.7 | 3.6 | 5.4 | | 17 | 5 | 3 | 153 | 1515 | 1.3 | 4.2 | 6.6 | 7.2 | | 18 | 6 | 1 | 161 | 4920 | 4.2 | -21.1 | 1.9 | 3.8 | | 19 | 6 | 2 | 162 | 3969 | 3.4 | -20.3 | 3.4 | 5.3 | | 20 | 6 | 3 | 163 | 548 | 0.5 | -20.1 | 5.6 | 7.2 | | 21 | 7 | 1 | 171 | 3490 | 3.0 | -42.5 | 1.8 | 3.8 | | 22 | 7 | 2 | 172 | 3089 | 2.6 | -42.6 | 3.1 | 5.4 | | 23 | 7 | 3 | 173 | 552 | 0.5 | -42.3 | 5.2 | 7.3 | B-97. The final refraction/diffraction grid consisted of 113 onshore rows and 598 alongshore columns. The grid spacing was 100 ft alongshore and 100 ft onshore. This grid represents an area that is 59,800 feet long in the north/south (alongshore) direction and 11,300 feet in the east/west (cross-shore) direction. The offshore boundary of the model grid was located seaward of the third reef system offshore of Broward County in 145 feet of water. For the purposes of this investigation, it was assumed that the bottom contours seaward of that depth were straight and parallel and that wave conditions in 145 feet of water are more or less uniform along the entire Segment III shoreline. B-98. Wave Refraction/Diffraction Analysis. The wave refraction/diffraction model used in the analysis was REFDIF-1 (Version 2.5) developed by Kirby and Dalrymple (1992). Simulations were performed for the 23 representative offshore wave conditions summarized in Table B-12. In each case, the nearshore pattern of each representative wave condition was computed across the entire computational grid. Figure B-14 presents the wave refraction/diffraction results in the vicinity of Port Everglades for the most frequently occurring condition (Case 3). The length and orientation of the arrows in the vector plot indicate the wave direction and height, respectively, as the waves are transformed across the irregular bathymetry of the study area. B-99. <u>Refraction/Diffraction Modeling Observations</u>. Several features of the bathymetry alongshore directly influence the shape and behavior of the subject shoreline. Most notably, Port Everglades Entrance itself controls the location of the shoreline immediately adjacent to the inlet. The shape of the shoals and jetties associated with Port Everglades modulates
the approaching wave field in a manner that results in a focusing of wave energy immediately downdrift of Port Everglades. This wave focusing, combined with sheltering from the inlet jetties, causes a large gradient in breaking wave heights and directions along the downdrift shoreline. This phenomenon is most notable within 3,000 feet of the south jetty. B-100. GENESIS Nearshore Wave File. The GENESIS model employs a nearshore wave transformation file to transform waves from the offshore time series to the shoreline to calculate breaking conditions. The method involves determining wave height and angle conditions at a pre-determined "nearshore reference depth." This depth is chosen such that very few (if any) of the waves in the offshore time series will break at this depth, so as to avoid the truncation of any wave energy in the offshore time series. From this nearshore reference depth, the input wave heights and angles from the refraction analysis are assumed to propagate onshore to breaking over straight and locally parallel contours, consistent with linear wave theory. B-101. The difficulty in the assumption of locally straight and parallel contours between the reference depth (typically 20 ft or deeper) and the shoreline is the omission of any bathymetric features that lie in between. Inspection of Figure B-16 illustrates that along the shorelines adjacent to Port Everglades, very significant bathymetric features lie in water depths of 15 ft or less. Omission of the effects of these features on the wave field would essentially invalidate any shoreline change modeling or longshore transport analysis. B-102. Bodge et al., (1996), present a method by which input wave data for shoreline change models may be improved by accounting for nearshore bathymetric features up to the breaking point. This method, termed "backward refraction²," involves computing the breaking wave height and angle alongshore from the wave refraction analysis, then computing via linear theory the corresponding wave height and angle at the chosen nearshore reference depth. In this method, any depth can be chosen as a reference depth, thus allowing the modeler to assure that no wave energy would be truncated in the offshore time series. The "backwards refracted" wave data are ultimately converted to GENESIS compatible input files using the SMS software utility WTNSWAV. _ ² The process is termed "backward refraction" since most refraction calculations involve transforming a wave of given properties from a deeper water condition to a shallower depth, whereas with this analysis the shallower water wave is transformed "backward" offshore. Figure B-16: Example of refraction/diffraction model results at Port Everglades. # Calibration/Verification - B-103. General. Of specific interest to the GENESIS shoreline change model study are the potential effects of proposed project modifications along the northernmost reach of the Segment III shoreline. Therefore, for purposes of this investigation, the GENESIS shoreline change model was calibrated and verified with measured shoreline change along the northernmost reach of the Segment III shoreline. Specifically, measured shoreline data for the 1989 John U. Lloyd Beach State Recreation Area beach fill was used. - B-104. <u>Model Domain.</u> The GENESIS model is a one-dimensional shoreline change model that requires one-dimensional grids for the simulations. Grid cell spacing for the John U. Lloyd model was set at 60 feet. This allowed for the minimum of three grid cells between simulated groin locations. (It is noted that the proposed groins are spaced between 270 and 300 feet apart). Considering the 200-grid cell capacity of the GENESIS model used in this investigation, only 12,000 feet of shoreline were modeled. The Dania Gap and adjacent shorelines are between 12,000 and 16,000 feet south of Port Everglades. - B-105. The northern boundary of the GENESIS grid corresponds approximately to the Port Everglades south jetty. The southern boundary was set in the vicinity of FDEP monument R-98. The resulting model (N-S) distance was about 12,000 feet, or 200 cells. The grid was generated with a 2 degrees east-of-north rotation angle, which is approximately the study area shoreline orientation. - B-106. <u>Physical Input Data.</u> Physical input data for the model was taken from recent beach survey and geotechnical data. The berm elevation was set at +10 feet, NGVD and the depth of closure was assumed to be –8.3 feet, NGVD, on average, along the entire study shoreline (see Table B-4, p. B-11). The median grain size of the beach sediments was assumed to be 0.33 mm. - B-107. <u>Input Shorelines</u>. The shoreline surveys used as input to the model were acquired from the available shoreline position database. The November 1990, October 1993, and August 1998 beach profile surveys were used for model calibration and verification. The model calibration period was November 1990 to October 1993. The verification simulation was for the period between October 1993 and August 1998. The Erosion Control Line (ECL) is assumed to represent pre-project initial conditions for all simulations. The ECL is the assumed pre-project shoreline for the project formulation in this analysis. - B-108. <u>Calibration</u>. The GENESIS model was calibrated for the period between November 1990 and October 1993. The project was completed in August 1989. Therefore, it is assumed that the November 1990 survey represents equilibrated conditions. Furthermore, during the calibration period a sufficient supply of sand was in the littoral system to realize the areas sand transport and shoreline change potential. - B-109. Transport coefficients K₁ and K₂ were set at 0.03. The calibrated *net* transport rate along the John Lloyd State Recreation Area shoreline averaged about 42,000 cubic yards per year. A maximum *net* transport rate of about 45,000 cubic yards per year was realized about 2,500 feet south of the inlet. These rates fall within the accepted transport rates in the vicinity of Port Everglades. The Port Everglades Inlet Management Plan reports the *net* rate to be on the order of 44,000 cubic yards per year. The calibrated model also computed the northerly-directed transport through the inlet south jetty to be about 11,000 cubic yards per year. This is consistent with previously reported losses to the Port Everglades Inlet (OAI and CPE, 1998). - B-110. Initial shoreline position results from the calibration simulation are presented in Figure B-17. Both the predicted and actual shoreline locations are depicted in the upper figure. Also in the lower figure, the measured and predicted shoreline change from the initial position is shown. It is noted that the calibrated model predicted the highly erosional area within 3,000 feet of the inlet quite well. Between about 3,000 and 6,000 feet of the inlet, however, the model predicts the shoreline to be stable to accretional where measured shoreline data suggest erosion. The GENESIS shoreline change model is unable to strictly simulate offshore sand losses. - B-111. Offshore Sand Losses. The difference between the measured and predicted shorelines may be explained by the potential for offshore sand transport along this localized section of shoreline. Considering the agreement between the model results immediately north and south of this area and the configuration of the nearshore rock structure, it is believed that considerable sand losses may occur to the offshore area. - B-112. The mechanism for the offshore losses is suspected to be venting of sand through low areas, or gaps, in the nearshore rock structure. As with any irregular structure in the surf zone, return flow from the wave breaking induced run-up is concentrated through low areas in the surf zone bathymetry. Along an open coast, sandy shoreline, these low areas usually exist as run-outs through the nearshore bar and migrate along the coastline. At John U. Lloyd, the run-outs are fixed in the nearshore rock structure. The offshore-directed flow through these low areas jet beach sands to offshore areas reducing nourishing benefits to the downdrift shoreline. - B-113. The existence of the sand venting low areas along the John U. Lloyd shoreline is demonstrated graphically with a detailed contour model of the nearshore area. Of benefit to this exercise is a comprehensive LIDAR dataset of the nearshore data south of Port Everglades that was collected in 1997. This survey provides a high-resolution representation of bathymetric conditions in the area with individual elevation data points centered on about a one-foot spacing. The contoured LIDAR data are depicted in the lower portion of Figure B-18 along with the initial GENESIS calibration results in the upper portion of the figure. Inspection of this figure reveals a highly irregular bathymetric condition along the 6,000 feet of shoreline downdrift of the inlet. Several low areas in the rock structure are clearly evident in the figure between R-87 and R-91. The most prominent of these features is situated in the vicinity of R-89. Of particular interest is the correlation between the location of the gaps in the rock and the area of disagreement between measured and predicted GENESIS calibration results. The GENESIS results do not consider offshore losses so it would be expected that if offshore losses actually occur, the model would predict less recession than that measured. B-114. To quantify the amount of sand that may be lost to offshore venting, the sand-bypassing feature of the GENESIS model was used to remove sand from the model domain over the simulation period. The extent and rate of sand removal was determined by the magnitude of disagreement between measured and predicted results. Figure B-17: John U. Lloyd GENESIS model calibration - initial results. Figure B-18: Location of low areas in nearshore rock relative to potential offshore sand loss areas. - B-115. For the calibration
period, it is estimated that approximately 25,000 cubic yards per year of sand are lost from the project shoreline to the offshore area. The predicted shoreline position using this technique is shown relative to measured condition in Figure B-19. The location of the sand removal area is also shown in the figure. When offshore sand losses are considered, the calibration results are greatly improved. It is noted that this *adhoc* modification to the model provides for the apparent sand transport potential along the entire project reach to be realized. Therefore, the model will not falsely predict accretion along a known erosional shoreline where proposed project modifications may have an influence. The use of this additional calibration procedure resulted in a calibration/verification factor of just under 5.0 feet for the entire 12,000 feet of shoreline. The total computed net volume change along the model reach averaged about 32,800 cubic yards per year. - B-116. <u>Verification</u>. A verification simulation was performed to test the model calibration. The verification simulation was for the period between October 1993 and August 1998. The results of the verification are present in Figure B-20. The agreement from the verification period is poor compared to the calibration results. Adjustments to the calibration coefficients, however, are not made due to the verification results. - B-117. The poor agreement between the measured and predicted shorelines is a product of the GENESIS model's inability to model various sediment sizes during a simulation. The input sediment size must be constant throughout the entire simulation. The model assumes there is an unlimited amount of sand of a given size available for unlimited transport if there are no seawalls present. - B-118. Interestingly, the shoreline along the northern reach of John U. Lloyd State Recreation Area between 1993 and 1998 was in a highly eroded condition. Only a limited amount of sand was available along the northernmost reach. The sediment matrix along the northern end of John U. Lloyd consisted mostly of larger sands and shells and gravel to cobble sized stones that are not transported as easily by the normal wave climate as more typical beach sands. This material is rubble excavated from the offshore borrow areas during construction of the initial beach fill project that was not removed from the fill material prior to placement upon the beach. This rubble essentially armors the shoreline thus resulting in a lower than normal measured shoreline recession rate. Therefore, the over-prediction of shoreline recession by the GENESIS model is not surprising. Based upon the agreement achieved for the calibration period, where there was a sufficient supply of sand in the littoral system, it is assumed that the calibrated model accurately represents the shoreline change potential of beach fill along the shoreline south of Port Everglades. Figure B-19: John U. Lloyd GENESIS model calibration with consideration of offshore sand losses. Figure B-20: John U. Lloyd GENESIS model verification. ## **Verification of Hollywood/Hallandale GENESIS Model** - B-119. For completeness, the calibration parameters developed for the high-resolution model were verified with the low-resolution model. The low-resolution model verification was performed for the period between October 1993 and August 1998. This is the same verification period used for the high-resolution model. Of interest to the low-resolution model is the reach of shoreline from the southern end of John U. Lloyd to northern Hollywood. - B-120. <u>Model Domain</u>. The grid cell spacing for the Hollywood/Hallandale model was set at 200 feet. This provided for the 40,000 feet of shoreline to be represented in the 200-grid cell model. The northern boundary of the GENESIS grid corresponds approximately R-97which is some 11,000 feet south of the Port Everglades south jetty. The southern boundary was set about 5,000 feet south of the Broward-Dade County Line. The grid orientation was identical to that for the high-resolution model at 2 degrees east-of-north. - B-121. <u>Physical Input Data.</u> Physical input data for the model was taken from recent beach survey and geotechnical data. The average berm elevation was set at +7 feet, NGVD and the depth of closure was assumed to -12 feet, NGVD, on average, along the entire Segment III shoreline. The median grain size of the beach sediments was assumed to be 0.33 mm. - B-122. <u>Verification</u>. The results of the low-resolution model verification indicated that the calibration coefficients K_1 and K_2 at a 0.03 slightly under-predicted the magnitude of average sediment transport along the study shoreline compared to that computed for the John U. Lloyd model and that documented in the Inlet Management Plan. Therefore, for the low-resolution model, these parameters were modified to 0.07. The increase in the calibration coefficient values was necessary due to the increase in the depth of closure compared to the John U. Lloyd model. Both models produce average net transport rates of about 42,000 cubic yards per year. #### **Environmental Effects from Shoreline Erosion** B-123. The erosional stress and sediment deficit along the Segment III shoreline has resulted in chronic shoreline recession and dune loss. Shoreline and dune erosion reduces the dry beach area necessary for successful marine turtle nesting. The most notable area along the Segment III shoreline where the loss of beach has had an impact upon sea turtle nesting habitat is at the northern end of John U. Lloyd Beach State Recreation Area and the Naval Surface Warfare Center shoreline. As discussed in previous sections, this reach of shoreline is highly erosional. Historical shoreline and beach profile data indicate that when this reach of shoreline is in an eroded condition, the beach is characterized by minimal dry beach area and high steep bluffs along the back beach. Such beach conditions are problematic to sea turtle nesting and nesting success. Nests that are deposited along a section of shoreline in such a condition, if not relocated, are susceptible to disturbance from the erosion and inundation during periods of high tides. In the most sever instance, the beach conditions are such that turtles are unable to successfully deposit a nest resulting in a "false-crawl". B-124. There is evidence at John U. Lloyd that suggests that marine turtle nesting and nesting success is related to beach condition. For example, Table B-13 includes sea turtle nesting data along the northernmost 1,600 feet of the John U. Lloyd reach shoreline for the three years between 1999 and 2001. The data clearly indicate a continued reduction in sea turtle nesting along the reach of shoreline over the period. Inspection of the beach condition data that represents the same period clearly indicates continual degradation of the dry beach area. At present, there most of the beach section if inundated to the base of the bluff at high tide. Table B-13: John U. Lloyd Beach SRA Sea Turtle Nesting Data. | John U. Lloyd Beach SRA Sea Turtle Nesting Data | | | | | | | | |---|----------|----|--|--|--|--|--| | From Jetty to 1,100 feet south (Jetty to ½-way between RR5 and RR6) | | | | | | | | | No. of Nests Percent of Total Nests | | | | | | | | | 2001 | 2001 2 1 | | | | | | | | 2000 | 12 | 4 | | | | | | | 1999 | 18 | 9 | | | | | | | From Jetty to 1,600 feet south (Jetty to RR5) | | | | | | | | | No. of Nests Percent of Total Nests | | | | | | | | | 2001 | 7 | 3 | | | | | | | 2000 | 21 | 7 | | | | | | | 1999 | 33 | 16 | | | | | | # **Problem Summary** B-125. Based upon field inspections, historical hydrographic and topographic survey data, performance monitoring of past beach fills, an updated sediment budget analysis of Port Everglades, and the calibrated and verified GENESIS model, it is determined that the authorized (previously constructed) reaches of the Segment III shoreline require additional sand nourishment. The areas include the northern reach of John U. Lloyd Beach State Recreation Area and the entire Hollywood/Hallandale shoreline. Both of these areas have been nourished twice previously. The analyses also indicate that there are localized areas of these past projects that have performed poorly due to higher than average erosional stress. These areas include the 2,800 feet of shoreline immediately south of the Port Everglades and the southern terminus of the John U. Lloyd and northern terminus of the Hollywood/Hallandale beach fills. The former routinely experiences erosion rates exceeding 30 ft/yr with maximum recession rates approaching 50 ft/yr. Along the latter areas, past beach fill projects have been impacted by high shoreline recession rates due to end loss effects. The high erosional stress and resultant dry beach losses also affect the quality of marine turtle nesting habitat. Implementation of the authorized project with modifications is proposed to address the identified problems. #### PROTECTIVE BEACH DESIGN AND COSTS - B-126. This section addresses the dimensions and costs for (1) the reevaluation of the authorized (previously constructed) project (2) the implementation of the reevaluated authorized project with modifications. The reevaluation of the authorized project is based upon the physical and economic conditions for the entire 50-year project life beginning in 1976. The implementation of the reevaluated project with modifications is based upon 1998/2001 physical and economic conditions. The National Economic Development (NED) plan is formulated from the reevaluation of the authorized project. - B-127. The proposed project modifications include a reduced design section at John U. Lloyd and beach fill tapers at the northern and southern ends of the Hollywood/ Hallandale fill. The beach fill tapers are engineering modifications intended to reduce end
losses from the design section and increase the project renourishment interval. A groin field is also proposed along the northern end of the John U. Lloyd reach. This project modification is intended to improve shoreline stability along the highly erosional shoreline immediately downdrift of Port Everglades, thus reducing the required project's advance nourishment volume and average annual cost. - B-128. The benefit of mechanical sand bypassing at Port Everglades to the Segment III Shore Protection Project was also investigated. The purpose of this evaluation was to demonstrate the physical and economical benefits of sand bypassing to the Segment III shoreline and Federal shore protection project. ## **Reevaluation of the Authorized Federal Project (NED Plan)** - B-129. <u>Project Length.</u> The authorized Federal project in Segment III includes two reaches of shoreline between Port Everglades and the Broward/Dade County Line. These include the 8,100 feet of shoreline for the Port Everglades south jetty to about R-94 and the 27,500 feet of shoreline from about R-101 to the Broward/Dade County Line (R-128). The north terminus of the fill will abut the south jetty structure. A full design section will be constructed and maintained to the Broward/Dade County line. - B-130. <u>Berm Elevations.</u> The design berm elevation varies along the Segment III project shoreline to approximate the natural berm elevation along the existing beach. Along the John U. Lloyd State Park shoreline between the south jetty of Port Everglades and R-94, the design berm elevation is +10 feet NGVD. The design berm elevation for the Hollywood/Hallandale shoreline reach is +7 ft NGVD. - B-131. <u>Berm Widths.</u> Various design beach widths were considered for purposes of reevaluation the dimensions of the authorized project. The design berm widths of the beach fill project along both the John U. Lloyd and Hollywood/Hallandale shoreline reach were varied between 25 and 75 feet. These berm widths are defined as a seaward translation of the pre-project mean high water line. - B-132. Beach Slopes. The beach profile shape varies along the entire Segment III shoreline. The typical profile shape along the Segment can be described with equivalent slopes. Design beach slopes along the northern John U. Lloyd shoreline reach are generally equivalent to 1:10 and 1:30 above and below the mean low water elevation, respectively. Along the Hollywood/Hallandale shoreline reach, the design beach slopes are 1:10 and 1:45 above and below the mean low water elevation, respectively. These beach slopes are generally equivalent to the trend of the beach profile shape above and below the mean low water line. - B-133. <u>Design Fill Volume</u>. The design beach volume is that portion of the beach fill that provides the permanent storm damage and recreation benefits to the project area. The design volume for each alternative was determined using the design berm width, elevation and translated profile. For the purposes of this formulation, profiles from the August 2001 survey are assumed to represent typical beach conditions and were used in the profile translation. Along those areas were beach conditions are severely over-eroded (i.e., northern John U. Lloyd and northern Hollywood) a beach profile shape was derived from measured beach profiles were sufficient sand resources are available to represent healthy profile conditions. - B-134. The optimum design beach volume is that which maximizes net primary benefits for variations in berm width. To reevaluate the authorized project dimensions the design beach volumes for mean high water shoreline extension of 25 to 75 ft were computed water extensions were developed assuming pre-construction shoreline conditions. The design beach volume and estimated average annual cost associated with each of these berm widths is included in Table B-14. Details of the cost estimates are included in Sub-Appendix B-2. - B-135. Advance Nourishment Volume and Renourishment Interval. A sacrificial volume of fill material, termed "advance nourishment" will be placed in addition to the design beach volume to offset erosion anticipated after the project's construction. The volumetric requirement for the advance nourishment is determined by historical ("background") volume loss rates along the project area, end losses associated with the project itself, and the renourishment interval. - B-136. The historical volume loss rate is based on beach profile changes measured between 1989 and 1998 and the results of the sediment budget developed for Port Everglades. The average annual beach volume change rate along the two reaches of the authorized Segment III project shoreline is 130,000 cy/yr. This volume change includes 53,000 cubic yards per year of erosion along the northern 8,100 feet of John U. Lloyd and 77,000 cubic yards of erosion along Hollywood/Hallandale. Table B-14: Project dimensions and costs for reevaluation of authorized project. | Design | Design | | |--------|---------------|--| | Berm | Beach | | | Width | Volume | | | (feet) | (cubic yards) | | | 25 | 892,090 | | | 50 | 1,381,660 | | | 75 | 1,907,800 | | B-137. The project renourishment interval is the number of elapsed years between programmed replacements of the advance nourishment volumes. The optimum renourishment interval is defined as that which minimizes the average annual equivalent cost of project implementation. Table B-15 presents the average annual equivalent project costs for a 50-ft design section and renourishment intervals from 5 to 7 years. Average annual equivalent costs were computed using a 6 and 1/8 percent interest rate and a 50-year project life. Considering the placement of advance nourishment along the entire project shoreline, the most cost effective renourishment interval is six years. The details of each of the project cost estimates outlined in Table B-14 are included in Sub-Appendix B-2. Table B-15: Renourishment interval optimization for the Segment III reevaluated project cost. | | Renourishment | Average Annual Cost | | | | | | |---|---------------|---------------------|--------------|--------------|--|--|--| | | Interval | 25-ft Design | 50-ft Design | 75-ft Design | | | | | | (years) | Berm | Berm | Berm | | | | | ſ | 5 | \$2,710,000 | \$3,169,000 | \$3,854,000 | | | | | | 6 | \$2,692,000 | \$3,151,000 | \$3,835,000 | | | | | | 7 | \$2,834,000 | \$3,293,000 | \$3,977,000 | | | | B-138. <u>Future Renourishment Volume.</u> After construction of the initial project, performance monitoring of the placed material will be conducted to determine with greater accuracy the future periodic renourishment requirements. For the purposes of this report, it is considered that the future periodic renourishment volume is the same as the advance nourishment volume. B-139. Overfill Volume. The overfill volume is the additional quantity of material necessary to allow for the textural differences between the native beach and borrow area material. The overfill volume is determined by multiplying the overfill ratio by the required advance and future nourishment volumes. The overfill ratio is only applied to the nourishment volumes because the design beach will theoretically never be exposed to the sorting action of nearshore waves and currents. - B-140. Since past projects along the Segment III shoreline have been constructed from numerous borrow areas and the placement locations of those various sediments are not known exactly, it is difficult to estimate an overfill ratio. For comparative purposes, the overfill ratio is the same for all project considered in the project formulation. Only the volume of the design beach varies to which the overfill ratio is not applied. Therefore, an overfill volume is not applied in this analysis. - B-141. <u>Hardbottom Coverage</u>. The hardbottom coverage is considered in the reevaluation of the authorized project. Estimates of hardbottom impacts are based upon the 1999 location of the hardbottom limit and a profile translation technique. The local depth of closure for each measured beach profile was also considered in estimate the approximate seaward extent of the equilibrium toe-of-fill. - B-142. <u>Project Costs.</u> It is estimated that the unit cost for sand for the initial construction in 1980 was \$6.62 per cubic yard. This is based upon estimated costs assuming that previously used sand resources immediately offshore of Segment III are available. For the purposes of comparison, a mobilization cost of \$1,000,000 is assumed for all alternatives. It is assumed that the cost of nearshore hardbottom mitigation is \$300,000 per acre. This value is based upon the estimated cost to construct limestone boulder mitigation in the nearshore region. - B-143. Costs for project engineering and design, construction administration, maintenance, and project monitoring are estimated as a percentage of contract costs. A contingency of 15 percent is included for all costs estimates. - B-144. <u>Summary</u>. Consideration of project benefits in Appendix D indicates that the 50-ft design berm maximizes the net primary project benefits. Therefore, the 50-ft design beach section with a requirement for renourishment every six years is the NED plan. The economics of implementing the NED for the remainder of the project life are developed in the following section. ## Implementation of the Reevaluated (NED) Plan B-145. Based upon economic considerations, an ECL (pre-project shoreline) extension of 50 feet was found to provide the maximum net primary project benefits along the entire Segment III shoreline. Implementation of this plan will require replacement of portions of the design section and advance nourishment along the entire Segment III shoreline. ## Evaluation of John U. Lloyd as Separable Element B-146. It is noted that the density of shorefront development along Segment III is highly variable. The densest and most valuable shorefront
development in Segment III is in Hollywood and Hallandale. Thus, these shoreline reaches generate most of the Segment III storm damage reduction benefits for the Segment III. Since Segment III was initially constructed as a continuous segment, the reevaluation treated the project as such. Thus, the John U. Lloyd reach was not evaluated as a separable element. For the purposes of implementation, however, an additional analysis was conducted to confirm that the John U. Lloyd Reach is justified as a separable project element. This analysis included consideration of the separable costs and benefits of the John U. Lloyd reach. B-147. There is a relatively small amount of development along the John U. Lloyd project reach. The most notable development at that location is infrastructure associated with the Naval Surface Warfare Facility immediately downdrift of the Port Everglades south jetty. There are also scattered structures and other infrastructure associated with John U. Lloyd Beach State Recreation Area and Nova University. The John U. Lloyd project output includes storm damage reduction, recreation, and environmental enhancement and preservation. The latter two outputs are considered incidental. B-148. The separable element evaluation for John U. Lloyd included consideration of three project alternatives. These are the 50-ft design berm as identified in the Segment III reevaluation, a 25-ft design berm, and a 0-ft design berm. The latter is essentially the periodic nourishment alternative where the pre-project shoreline is reestablished and maintained. The design berm would be situated along the previously constructed section of the John U. Lloyd reach between the south jetty and R-94. Six years of advance fill is applied to each alternative. Advance fill is distributed according to historical erosion patterns and predicted sand loss rates. An allowance for overfill is also included. The overfill volumes were developed from the sediment compatibility analysis discussed below. A design berm wider than 50-ft is not considered due to the increased nearshore hardbottom impacts that would be associated with a wider berm. It is noted that reestablishment and maintenance of a 50-ft design berm along John U. Lloyd would impact approximately 10 acres of nearshore hardbottom based upon 2001 conditions. B-149. Project costs were formulated according to global unit cost estimates developed for the reevaluation of the Segment III project. The unit cost of sand is assumed to vary from \$9.79 per cubic yard for the proposed renourishment activity to \$15.00 per cubic yard for future nourishment activities where sand sources may be located at more distance areas than existing sources. A separable mobilization cost of \$250,000 is assumed to provide for the establishment of sand handling equipment at the John U. Lloyd project area. It is assumed that since John U. Lloyd is an integral element to Segment III and it is planned that this project reach will be constructed coincident with the Hollywood/ Hallandale, only the incremental increase in project costs associated with the incremental mobilization and the sand placement is considered. B-150. Table B-16 summarizes the sand volumes and average annual cost to implement the separable John U. Lloyd alternatives project. The average annual project costs are based upon a 6 and 1/8 percent interest rate for the remaining 24 years of the project life. The details of the cost formulation are included in Sub-appendix B-3. Table B-16: Summary of JUL reach alternative sand volumes and costs. | | Project Extension | | | | | |-----------------------------------|-------------------|-------------|-------------|--|--| | | 0-ft | 25-ft | 50-ft | | | | JUL Reach Volumes (cy) | 483,000 | 624,000 | 697,000 | | | | JUL Hardbottom Impacts (acres) | 5.0 | 8.5 | 10.0 | | | | JUL Reach Average Annual
Costs | \$1,410,000 | \$1,735,000 | \$1,895,000 | | | B-151. As discussed in Appendix D, there are sufficient storm damage reduction benefits along the John U. Lloyd reach to justify sand placement at that location as a separable Segment III project element. However, reestablishment and maintenance of the 50-ft NED design berm at John U. Lloyd does not maximize the separable net primary benefits along that reach. Instead, reestablishment of pre-project shoreline conditions and periodic nourishment sufficient to maintain the pre-project shoreline produces the maximum net primary benefits. Therefore, the John U. Lloyd project will only include the reestablishment of the pre-project shoreline and the placement of periodic nourishment. B-152. It is noted that this project configuration significantly reduces the potential nearshore hardbottom impacts along the John U. Lloyd shoreline. There are, however, approximately 5 acres of unavoidable nearshore hardbottom impacts associated with the periodic nourishment plan. The configuration and performance of the John U. Lloyd project along with additional Segment III modifications are detailed in following discussion. # **Plan Implementation** - B-153. <u>Design Fill Volume</u>. The design beach volume required to implement the reevaluated plan without the 50-ft design beach section at John U. Lloyd in 2002 is estimated to be approximately 576,600 cubic yards. The design volume was determined using the design berm widths, elevation and translated profile represented by August 1998 beach conditions. This volume is inclusive of the volume of fill behind the Erosion Control Line (ECL). - B-154. <u>Advance Nourishment Volume and Renourishment Interval.</u> The volume of advance fill required to implement the reevaluated plan is based on beach profile changes measured between 1989 and 1998 and the results of the sediment budget developed for Port Everglades. The average annual beach volume change rate along the two reaches of the authorized Segment III project shoreline is 130,000 cy/yr. - B-155. The optimal renourishment interval for the remaining project life is reevaluated to minimized project costs. As before, the optimal renourishment interval is determined by comparison of average annual costs of various interval periods. In this analysis, renourishment interval is 5, 6 and 7 years were considered. The total average annual cost of each of these alternatives is included in Table B-17. The details of the cost comparisons are included in Sub-Appendix B-4. - B-156. To accommodate expected sand losses over the six-year renourishment cycle 780,000 cubic yards of sand will be placed as advance fill. This does not include volumes required for overfill and endlosses. Table B-17: Re-optimization of renourishment interval for plan implementation. | Renourishment Interval | | |------------------------|---------------------| | (years) | Average Annual Cost | | 5 | \$4,680,000 | | 6 | \$4,471,000 | | 7 | \$4,692,000 | B-157. <u>Future Renourishment Volume.</u> After construction of the 2002 project, performance monitoring of the placed material will be conducted to determine with greater accuracy the future periodic renourishment requirements. For the purposes of this report, it is considered that the future periodic renourishment volume is the same as the advance nourishment volume. The future renourishment volume required from offsite sand sources would be greatly reduced if sand bypassing is implemented at Port Everglades. B-158. Overfill Volume. A sediment compatibility analysis was conducted for each borrow area and the existing beach material to evaluate potential overfill requirements. The composite grain size distributions were used to represent the potential offshore borrow areas (see Appendix E). Appendix E identifies seven of borrow areas that can be utilized for this project, though only Borrow Areas II, III, IV, and VI will be considered for use in Segment III because of the proximity of the borrow areas to the project Segment and compatibility. B-159. For this study, a modified equilibrium method was used to formulate overfill ratios for each of the borrow areas (Munez-Perez, et al, 1999). The original equilibrium method of Dean (1991) employs a shape factor that is a function of mean grain size. This method does not, however, take into account the effects of nearshore hardbottom or reef features upon beach profile shape. The modified equilibrium method uses a shape factor that is a function of grain size, depth of hardbottom, and the cross-shore width of the hardbottom. The estimated overfill volumes are shown in Table B-18. Borrow Areas III and VI are fully compatible with the Segment III beaches. Borrow Areas II and IV require an overfill density of 1.22 cubic yard per linear foot of beach and 1.25 cy per linear foot of beach along the Segment III shoreline, respectively. Table B-18: Estimated overfill ratios for Segment III. | | | | Hollywood/ | |-------------|-----------------------------|---------------|------------| | Borrow Area | | John U. Lloyd | Hallandale | | | Grain Size, d ₅₀ | | | | Number | (mm) | 0.33 mm | 0.34 mm | | II | 0.28 | 1.22 | 1.25 | | III | 0.34 | 1.00 | 1.00 | | IV | 0.28 | 1.22 | 1.25 | | VI | 0.38 | 1.00 | 1.00 | B-160. An overfill allowance is only added to the advance fill volume as this is the portion of the project that is provided as a transportable volume of sand. It is estimated that the maximum advance fill volume for the Segment III project will be 780,000 cubic yards. It is not known, however, how the material from the borrow areas will be distributed along the Segment III shoreline as the project is constructed. Because of this and the fact the overfill ratios vary between the borrow areas, it is assumed that the beach fill material will be placed uniformly along the Segment III shoreline from all of the borrow areas according to the distribution of the borrow areas volumes. That is, every foot of shoreline in Segment III will have a fraction of sand from each of the five borrow areas. Although this assumption is
probably not realistic due to construction limitations, it is proposed in an attempt to formulate a meaningful overfill volume. B-161. The distribution of sand volumes available in each of the four borrow areas is summarized in Table B-19. Of the sand volume proposed for the Segment III shoreline, about 55.5 percent of the fill will be derived from borrow areas II and IV for which an overfill allowance is required. Applying the assumption proposed in the preceding paragraph allows an "effective" overfill ratio for the entire Segment III project to be computed through a weighted averaging technique. According to the results presented in Table B-19, 108,000 cubic yards of sand are required to be added to the advance fill volume of the project to accommodate the textural differences found between the native Segment III beach material and the sediments in borrow areas II and IV. This equates to an overall overfill ratio of about 1.14. Table B-19: Computation of overfill for Segment III shoreline. | | | John U. Lloyd | | Hollywood/Hallandale | | | | |-------------|---------------|---------------|----------|----------------------|---------|----------|----------| | Borrow Area | | Base | | | Base | | | | | Volume | Advance | | | Advance | | | | | Distribution | Fill | Overfill | Adjusted | Fill | Overfill | Adjusted | | Borrow | Available for | Volume | Factor | Volume | Volume | Factor | Volume | | Area | Segment III | (cy) | | (cy) | (cy) | | (cy) | | II | 49.9% | 158,800 | 1.22 | 198,400 | 230,700 | 1.25 | 288,300 | | III | 37.3% | 118,800 | 1.00 | 118,800 | 172,500 | 1.00 | 172,500 | | IV | 5.6% | 17,800 | 1.22 | 22,200 | 25,900 | 1.25 | 32,300 | | VI | 7.1% | 22,600 | 1.00 | 22,600 | 32,900 | 1.00 | 32,900 | | Total | 100.0% | 318,000 | | 362,000 | 462,000 | | 526,000 | B-162. End Loss Reduction - Beach Fill Tapers/Transitions. The previously constructed beach fills along John U. Lloyd and Hollywood/ Hallandale experienced high sand loss rates at the terminal points of the fill in southern John U. Lloyd and northern Hollywood. End losses were particularly prominent during the first year after construction and are largely attributable to planform equilibration. The currently authorized project does not specifically include a project element that addresses end losses for the terminal ends of the fill sections. Considering documented high, end loss rates from previously constructed projects, beach fill tapers and transitions will be added to the authorized project to decrease end losses. Beach fill tapers will be incorporated into the design at the northern end of the Hollywood/Hallandale project reach while the fill will be to the transitioned to the adjacent shorelines at the southern ends of John U. Lloyd and Hollywood/Hallandale. It is noted that a taper is defined a fill transition extends beyond the design reach and requires additional fill material to meet performance requirements. A transition, on the other hand, includes the tapering of advance fill along areas of decreasing transport potential or advantageous changes in shoreline orientation. - B-163. The terminal ends of the authorized Segment III beach fill reaches have been generally located at R-94 for the southern end of the John U. Lloyd reach, R-101 for the northern end of the Hollywood/Hallandale reach, and R-128 for the southern end of the Hollywood/Hallandale reach. Following construction of the most recent beach fills along these areas, the shoreline position at R-93 retreated about 60 feet during the first year following project construction, and retreated about 5.4 ft/yr over the next ten years. At R-101, shoreline receded nearly 100 feet during the first year following construction and averaged about 20 ft/yr of recession between 1991 and 1998. In both instances the design beach section was impacted by erosion within 2 years following project construction. The intended renourishment interval was eight years. - B-165. <u>Southern End of John U. Lloyd.</u> The elimination of the design section at John U. Lloyd and the orientation of the shoreline along central John U. Lloyd minimizes the need for a formal taper at the southern end of that project reach. In this instance, the advance fill will simply be transitioned to the natural alignment of the downdrift shoreline at a point of decreased shoreline erosion potential (approx. R-92). - B-166. Hollywood/Hallandale. To evaluate and optimize beach fill transitions necessary to maintain the design beach section along the Hollywood/Hallandale shoreline, the calibrated and verified low-resolution GENESIS model was employed. The simulations were executed for a six-year period assuming all cross-shore equilibration was complete at the initiation of the simulation. Advance fill was added to the model based on the previously determined demands of each reach. The taper and transitions were evaluated based upon their ability to maintain the design beach while minimizing the volume of sand used in initial construction. At the northern and southern ends of the Hollywood/Hallandale reach, tapers and transitions alone would not meet the requirement of maintaining the design section through the proposed nourishment interval. Therefore, a limited volume of sand was bulged at the terminal ends of the fill along with the tapers to ensure the performance criteria were met. The volume of the bulges were added to the estimated tapers volumes and reported with the total fill volume requires to address end losses. - B-167. Northern End of Hollywood/Hallandale. At the northern end of the Hollywood/Hallandale beach fill project, the optimum taper configuration included approximately 117,000 cubic yards of fill and extends approximately 2,000 feet north of the design beach. This would result in sand placement along about 70 percent of the Dania Beach shoreline. This terminal fill area is the most problematic of all those along the Segment III project shoreline. Taper configurations of 1,000 feet, 1,500 feet, and 2,000 feet were considered in the analysis. As indicated by the predicted results depicted in Figure B-21, a taper of at least 2,000 feet in length with some bulge will be required to maintain the design beach section for six years. Due to environmental considerations and the predicted adequate performance of the 2,000 ft taper, larger taper configurations were not considered. The expected area of hardbottom coverage with the tapers and additional sand at north Hollywood is estimated to be about 1.5 acres. Figure B-21: Predicted performance of taper alternatives at the northern end of the Hollywood/Hallandale beach fill. B-168. Southern End of Hollywood/Hallandale. The southern end of the project will be situated at the Broward/Miami-Dade County line. Terminal end fill losses at the southern end of the Hollywood/Hallandale beach fill will be addressed with the advance fill. Due to the natural curvature of the Dade County shoreline immediately south of the project area and the recent advance of that shoreline due to past Broward County and Sunny Isles (Dade County) beach fills, the terminal end of the fill will be exposed to reduced transport potential. GENESIS model predictions indicate that the advance fill tapered and terminated at the County line will maintain the require design beach over the renourishment interval. Some additional material will be added to the advance fill along the southernmost 1,500 feet of the southern end of the project to benefit the terminal end performance. The GENESIS results of the terminal end evaluation are depicted in Figure B-22. B-169. The results of this analysis demonstrate the limited effectiveness of a beach fill without engineered tapers and transitions. As expected, end losses from a beach fill without tapers are predicted to be extremely high immediately following construction. As a result, the design beach section is impacted by localized shoreline retreat within the first or second year following construction. B-170. In all, 137,300 cubic yards of sand will be required to address the anticipated end losses at the northern and southern ends of Hollywood/Hallandale. This sand volume is added to the total sand requirement to implement the optimal re-evaluated plan. Figure B-22: Predicted performance of southern terminal end of the Hollywood/Hallandale beach fill. - B-171. <u>Hardbottom Coverage</u>. It is estimated that approximately 7.56 acres of nearshore hardbottom will be impacted by the placement of sand associated with the implementation of the NED plan. Estimates of hardbottom impacts are based upon the 2001 location of the hardbottom limit and a profile translation technique. The local depth of closure for each measured beach profile was also considered in estimate the approximate seaward extent of the equilibrium toe-of-fill. - B-172. <u>Project Costs.</u> Project costs required to implement the reevaluated authorized project were formulated using a percent rate of 6 and 1/8 for the remaining 24 years of the project life. - B-173. It is estimated that the unit cost for sand for the 2002 construction will be \$9.79 per cubic yard. This cost estimate was developed by the Jacksonville District Cost Engineering Branch. The beach nourishment costs include \$1,000,000 for mobilization and demobilization and \$9.79 per cubic yard for material dredging. These costs were developed assuming a medium size hopper-dredge with rock separation capability, a 15 mile one-way steaming distance between the borrow areas, rock disposal area, and the beach, nearshore sand pumpout facility, and a pipeline booster. The locations of the proposed borrow areas relative to the project shoreline are shown in Appendix E. Results of the hopper-dredge estimate are presented at the end of this appendix. - B-174. It is noted that following the 2002 project, most cost effective sand resources offshore of Broward County will be depleted. Future sand resources for Segment III nourishments will have
to be imported from distant domestic offshore sites (i.e., Palm Beach or Martin Counties), foreign sites (The Bahamas or other Caribbean nations), and /or upland sites. Future sand will, therefore, be more expensive than the current identified sources. For the purposes of this investigation, it is assumed that future sand placed along the Segment III shoreline will cost up to \$15.00 per cubic yard. - B-175. The cost of nearshore hardbottom mitigation is \$300,000 per acre. This estimated is based upon actual cost of similar nearshore hardbottom mitigation in south Florida. - B-176. Cost estimates for monitoring were provided by the Broward County, Florida Department of Planning and Environmental Protection. Engineering, design, supervision and administration were based upon contract amounts agreed upon by Broward County and the joint-venture consulting engineer team. - B-177. The total average annual cost to implement the reevaluated plan for the remaining 24 years of the project life cycle without modifications is \$4,471,000. The details of the cost estimate for this plan are included in Sub-Appendix B-4. ## Modifications to the Reevaluated Project B-178. Modifications are proposed to the reevaluated project, to be implemented during the 2002 construction that would improve project performance and reduce project costs. The justification, dimensions, and benefits of these modifications are discussed in the following paragraphs. # Fill Dania Gap (R-94 through R-101) B-179. The previously constructed beach fills along John U. Lloyd and Hollywood/ Hallandale experienced high sand loss rates at the terminal points of the fill in south John U. Lloyd and north Hollywood. End losses were particularly prominent during the first year after construction and are largely attributable to dramatic planform equilibration caused by inadequate fill transitions. The currently authorized project does not specifically include a project element that addresses the terminal ends of the fill sections. Beach fill tapers, however, have been added to the reevaluated plan as engineering features for purposes of reducing the effects of fill end losses. B-180. An alternative method by which to reduce endlosses from the southern end of the John U. Lloyd project reach and the northern end of the Hollywood/Hallandale project reach would be to construct a continuous design section between the two projects, thereby eliminated the terminal ends of those project reaches. This would consist of placing a design section between R-94 and R-101. Considering that the optimum design berm width along the adjacent reaches that varies between 0 ft at John U. Lloyd and 50 feet at the northern end of Hollywood, a design section tapered between 0 and 50-ft between R-94 and R-101 is considered. Alternate berm configurations would require complicated transitions and would not be cost effective or environmentally acceptable to implement. B-181. Creation of a design section along this reach of shoreline would potentially produce additional storm damage reduction, loss of land, and recreational benefits for the project. Likewise, the addition of this project reach would increase the overall average annual project costs. To evaluate the economic efficiency of this proposed project modification, the incremental primary benefits and costs over the remaining 24-years of the project life are compared. If the incremental primary benefits are greater than the incremental project costs, then the modification would be economically feasible. The average annual project costs and benefits used to evaluate modifications to the reevaluated NED plan are based upon a percent rate of 6 and 1/8 for the remaining 24 years of the project life. B-182. The incremental additional sand volume required to construct the design beach section with advance nourishment would be approximately 360,000 cubic yards. This sand volume is a combination of the design beach, advance nourishment, and overfill. It would be expected that shoreline change would be similar to pre-project conditions. That is, the feeding effects due to the perturbations of beach fill along the adjacent shorelines would be eliminated. Therefore, pre-project loss rates were used to estimate advance fill requirements. The overfill volume was developed from the sediment compatibility described above. It is estimated that a fill of these dimensions would cover about 13 acres of nearshore hardbottom in southern John U. Lloyd and Dania Beach areas. B-183. <u>Project Costs.</u> The total average annual cost to implement the reevaluated plan with a fill section between R-94 and R-101 is \$5,206,000. This results in an incremental increase in average annual project costs over implementation of the reevaluated NED plan of \$735,000. The details of this cost estimate are included in Sub-appendix B-5. B-184. Economic Note. As discussed in Appendix D, constructing and maintaining a full design section does not generate incremental storm damage prevention benefits that equate to at least 50 percent of the incremental costs. It is more cost effective and less impactive to nearshore hardbottom to construct the beach fill with at transition at John U. Lloyd and a taper at the northern end of Hollywood. The Dania shoreline will receive an added beach width due to the construction of the beach fill tapers and will be maintained through sand losses from the adjacent projects. #### Groins B-185. Modifications to the Segment III authorized project are also proposed for the northernmost shoreline along John U. Lloyd (JUL) Beach State Recreation Area. Following both the 1977 and 1989 beach fills along this reach of shoreline, recession rates along the northernmost 2,800 feet of the project have consistently exceeded 30 ft/yr. Locally, maximum shoreline recession rates have exceeded 50 ft/yr. Measured shoreline change rates associated with the 1989 beach fill at JUL are shown in Figure B-24. B-186. To date, only advance fill has been placed in attempt to offset the erosion rate immediate to this area. Advance fill volumes placed during the projects, however, have not provided long-term protection of the design beach section at that location. In fact, the design section along the northern 2,800 feet of the John U. Lloyd shoreline has been impacted by shoreline recession within the first two years following construction of both the 1977 and 1989 projects. B-187. In addition to advance fill, a measure to reduce the sand loss rate from the northern John U. Lloyd shoreline included sand tightening the south jetty as part of the 1989 renourishment project. Although the jetty sand-tightening most likely reduced the sand loss rate to the inlet, the shoreline immediately downdrift of the inlet continued to erode more or less at historical rates. This may suggest that the sand loss rates to the inlet were relatively low compared to alongshore and offshore sand losses prior to the sand-tightening project. B-188. The extent of the most highly erosional shoreline is consistent with the acceleration of southerly alongshore sand transport potential immediately downdrift of Port Everglades. The uncalibrated north, south, and net alongshore sand transport potential is presented in Figure B-23. This curve was developed from a weighted averaged of the alongshore sand transport potential computed for each wave condition simulated in the refraction/diffraction analysis. The uncalibrated CERC longshore sand transport (LST) equation was used to formulate the transport potential patterns. B-189. The extent of the highest measured shoreline erosion and the limits of the steepest gradient in the alongshore sand transport is also evident in the residual shoreline configuration following recession of the most recent JUL beach fill project. Inspection of the aerial photograph also included in Figure B-24 reveals an unusual curvature in the 1998 shoreline between the jetty and R-89. This curvature is the result of the extreme erosional stress produced by the steep transport gradient. The agreement between the limits of this shoreline curvature, the extent of the steepest gradient in sand transport potential, and the highest measured erosional signal from the 1989 project is striking and supports a high confidence in the understanding of the shoreline change problem at this location. B-190. In theory, the potential for high sand loss rates along the northernmost 2,800 feet of the John U. Lloyd shoreline can be addressed in two principle manners. First, the advance fill volume can be designed to meet the large annual erosion rate. Techniques similar to this have been attempted in the past. The volume of advance fill placed to protect the design beach, however, has not been sufficient to meet the annual sand requirement. Due to the steep gradient in sand transport potential, a large percentage of sand placed as advance fill would need to be concentrated along a very localized reach of shoreline. This would result in an unusually wide beach fill that would be susceptible to accelerated planform adjustment. B-191. The second approach would consist of stabilizing a portion of the shoreline with structures and place the advance nourishment along the southern end and downdrift of the structure field. A structure field with advance fill would stabilize the most highly erosional reach of shoreline while providing adequate sand fill to nourish the downdrift shoreline. This method would translate the shoreline recession potential to a point downdrift of the structure field, an area with lower erosion potential. This would reduce the total amount of advance fill required for the project. In the absence of sand bypassing at Port Everglades, the structure field must be configured to maximize shoreline stability and minimize the amount of advance fill required to maintain the required design beach. Figure B-23: Alongshore sand transport potential and measured shoreline change along the
northern reach of John U. Lloyd Beach State Recreation Area (1989-1998). - B-192. To evaluate the expected performance of project configurations intended to address the erosion problem at John U. Lloyd, with and without shore stabilizing structure alternatives are simulated with the calibrated GENESIS model. The alternatives considered include the pre-project shoreline (i.e., ECL) as a baseline with (1) advance fill only, (2) 2 groins with advance fill, and (3) 10 groins with advance fill. The location and quantity of advance fill for each alternative was configured to maximize protection of the design beach while minimizing the quantity of advance fill. The two-groin alternative was configured so as to stabilize the northernmost 700 feet of shoreline where the net sand transport potential is to the north. This project configuration would minimize sand placement immediately adjacent to the inlet jetty and sand transport towards the inlet, thus reducing the potential for inlet related sand losses. The 10-groin alternative was configured to stabilize the entire reach of shoreline defined by the largest measured shoreline recession and the steepest gradient in alongshore sand transport potential (i.e., about 2,800 feet immediate to the inlet). This alternative would stabilize the most highly erosional section of shoreline and translate the feeder beach characteristics of the shoreline to an area where the alongshore sand transport potential is lower. (Note the area of reduced uniform southerly sand transport potential approximately 2,800 feet south of the inlet in Figure B-24.) The 10-groin configuration would also benefit future sand bypassing activities by stabilizing the most highly erosional section of shoreline and allowing bypassed sand to be placed far downdrift of the inlet. - B-193. <u>Advance Nourishment Only.</u> As a baseline for comparison, an advance fill only project configuration was considered. The project included sand fill to construct the design beach and advance fill sufficient to protect the design beach for a six-year period. The project configuration was simulated with the GENESIS model to demonstrate its effectiveness in maintaining a design beach. - B-194. The results of the advance nourishment only simulation are presented in Figure B-24. This alternative would include the placement of about 362,500 cubic yards of advance fill along the John U. Lloyd Beach State Recreation Area shoreline. It is interesting to note that this volume is similar to the volume of sand placed as advance fill along John U. Lloyd during the previous two projects. Unlike those projects, however, the model results suggest that approximately 90 percent of the required advance fill should be placed along the northern 3,000 feet of shoreline. This finding supports the idea that the John U. Lloyd shoreline is a strong feeder beach. With the advance fill in this concentrated configuration, the model indicates that the design beach would be protected from recession for about six years. - B-195. Although this analysis indicates that the pre-project beach would be maintained with such a beach fill configuration, accelerated losses to the offshore and inlet due to the wide fill section are not considered. The unusually wide beach fill immediately adjacent to the inlet's south jetty would most likely increase the potential for accelerated sand losses to the inlet and offshore areas. It is estimated that an average of at least 15,000 cubic yards per year of sand would be lost to the inlet with this project configuration. # **6-YEAR SIMULATION** Figure B-24: GENESIS results for advance fill only alternative. It is expected that this rate may be much higher during the early part of the project life when beach widths are at their maximum widths. Therefore, alternate project configurations are considered to reduce the advance fill volume and minimize the amount of sand fill placed immediately adjacent to the inlet. These project configurations would be intended to maintain the pre-project shoreline with sand retaining groins in place of advance fill along the most highly erosional section of shoreline. #### Two-Groin Alternative B-196. The two groin alternative would include the construction of two T-head groins within 700 feet of the Port Everglades south jetty and a spur attached to the south jetty. The configuration would address the shoreline instabilities associated with the net northerly sand transport potential along this reach of shoreline. Inspection of net alongshore sand transport potential curve in Figure B-23 indicates a nodal point in sand transport potential approximately 700 feet south of the inlet. Other investigations that have considered inlet hydraulics suggest that this nodal point may be located between 1,000 and 3,000 feet south of the inlet (Coastal Tech., 1994). Net sand transport north of the nodal point is to the north while south of the nodal point net transport is to the south. Net southerly transport accelerates rapidly from the nodal point to about 2,800 feet south of the inlet. B-197. It is proposed that the southernmost groin be positioned just north of the nodal point's northernmost predicted position. The full advance fill section would be constructed immediately south of the southern groin. Advance fill would transition from the south groin to the south jetty. The groins and spur would reduce the sand loss rate to the inlet and protect the Naval Surface Warfare Center upland infrastructure. B-198. <u>Dimensions.</u> The location and spacing of the groins were designed following the methods outlined in the SPM (1984) and by Bodge (1998). The spacing, length and crest elevations of the groins were designed to maintain the minimum design beach cross-section without the need for advance nourishment within the groin field. The groin spacing to active groin length ratio of 3:1 was used to configure the groin field. The active groin length is measured from the crest of the active beach berm (which is approximately the +6 ft NGVD elevation along the groin field shoreline) to the seaward end of the groin. The Shore Protection Manual suggests that groins be spaced using a ratio between 2:1 to 3:1 (USACE, 1984). The 3:1 ratio was used for this project to minimize the number of groins. A graphical concept of the two-groin structure configuration is presented in Figure B-25. B-199. Design of the active groin lengths considered (1) the minimum width of the design beach cross-section and (2) the expected equilibrated slope of the beach cross-section. The design beach cross-section requires that the mean high water line be maintained at the pre-project shoreline as represented by the Erosion Control Line (ECL). The expected post-project equilibrated slope of the beach fill is approximately 1 vertical - to 10 horizontal above the mean water level. A design active groin length of approximately 100 feet meets the above design criteria. The groin spacing to active groin length ratio of 3:1 requires an average distance between groins of approximately 300 feet. - B-200. The total length of each groin will be longer than the active groin length. The added section of each groin will be extended landward of the active portion of the groin to protect against flanking during storm events. The landward end of each groin will be completely covered by the beach fill. Total groin lengths will vary from approximately 100 to 180 feet. - B-201. A T-head will be constructed at the seaward end of each groin. The T-heads will serve to reduce the potential for the generation of rip currents along the groin stems and protect the seaward terminus of the groins. The T-head lengths for the northern and southern groin will be approximately 160 and 140 feet, respectively. The design procedures used to determine the size, shape, and configuration of the T-heads were taken from Bodge (1998). - B-202. The crest elevation of the T-heads and seaward end of the groin stems will be +4 ft NGVD. The crest elevation of the landward end of each groin stem will be +6 ft NGVD. - B-203. The groins will be of rubble mound construction to minimize wave reflection and the generation of rip currents. The side slopes of the groins will be 1V:2H. The groins will be primarily comprised of two layers of armor stone with a central section of core and chinking stone. The core and chinking stone will be placed where possible to partially sand tighten portions of the structures. The cross-section of the landward portions of the groins is not large enough to allow for placement of sufficient core and chinking material to provide for a sand-tight core. The landward portion of each groin, however, will be buried by sand associated with the design beach section. Because the cross-sectional area of the seaward ends of the groins is larger that the typical stem section, sufficient core and chinking material will be placed to provide sand tightness. - B-204. <u>Stone Sizes.</u> Armor stone sizes were determined using Hudson's stability equation and the design, depth limited breaking wave height. A 10-year design storm condition was used to estimate the required armor stone size. In southern Broward County, the 10-yr storm surge has been estimated to be approximately 4.0 ft NGVD (FEMA, 1978: WIS, 1982). - B-205. The controlling elevation at the seaward end of the groins is about –5.0 ft NGVD. During a 10-year storm event, the water depth at the seaward ends of the groins is expected to average about 9.0 feet. Assuming a breaking wave height to water depth ratio of 0.78, the design, depth limited breaking wave height is approximately 7.0 ft. Figure B-25: Concept of two-groin alternative. 0 200 FT 400 FT - B-206. Rough, angular quarried granite with a unit weight of 165 lb/ft^3 will be used for the armor stone. The stability coefficient (K_D) for this material, two layers of armor stone, and breaking wave conditions is 1.6 (Table 7-8, SPM). The required
armor stone weight for the groins will range from 1.5 to 2.5 tons with 50 percent of the individual stones weighing 2.0 tons or more. The core and chinking stone used in selected structures will consist of well-graded stone with a minimum unit weight of 165 lb/ft^3 . The core and chinking stone will be a well graded material varying in size between 6 and 18 inches. The two-groin alternative would require about 5,300 tons of granite stone. - B-207. Foundation Conditions. The structures will be underlain by sand. A rigid structure foundation, however, will be required beneath the groins and the jetty spur to protect underwater cable infrastructure associated with the Naval Surface Warfare Center. The cables extend from the Navy's upland facility to the offshore areas to support underwater acoustic equipment. The cables are simply lying upon the sea floor with no structural protection. It is estimated that the replacement cost of the cable field is on the order of \$350 million. To minimize the risk of damage to these cables, stone filled marine foundation mattresses will be placed as the foundations for the structures. The mattresses will distribute the load of the rock groin uniformly upon the seafloor and cables, thus minimized the loading forces upon the cables. - B-208. <u>Cable Field Protection</u>. In addition to the marine mattress foundations beneath the groins, large cable HDPE conduit (3 to 4, 18-inch conduits) will be installed from the NSWC building across the nearshore area to a point beyond the active sand transport limit. These conduits will be used to install new cables and rerun repaired cables from the facility to the offshore areas. This will prevent the deployment of cables across the beachface, a practice that has historically created a hazard to recreational beach use and resulted in frequent breaks in the cables that require costly repairs. The cables will be anchored with the same type of marine mattresses used as groin foundations. - B-209. <u>Groin Construction</u>. The groin field will be constructed in the summer. Most of the groin field construction activity will be land based. Due to restricted access, the jetty spur may be constructed from a barge that is mobilized to the interior of the Port Everglades entrance. If a barge is used, equipment and materials will access the jetty spur across the south jetty of Port Everglades. - B-210. <u>Model Simulations</u>. To evaluate the benefit of the two-groin alternative, the alternative project configuration was simulated with calibrated GENESIS model. It is noted that the GENESIS model cannot explicitly simulate the shore stabilizing features of the proposed jetty spur. To model the spur, it is assumed that the south jetty would be impermeable to sand transport. The T-head groins also cannot be explicitly modeled with GENESIS. To model the T-head, groins lengths and permeabilities are adjusted in the model to match the shore stabilizing characteristics of the groins. - B-211. The results of the six-year GENESIS simulation for the two-groin alternative are presented in Figure B-26. Comparisons of the pre-project and calculated post-construction shoreline locations indicate that the groin field, with adequate advance nourishment, will provide a uniformly wide beach along the JUL shoreline. The results also indicate that the shoreline will maintain the design beach section, on average. The results of this simulation also demonstrate the benefits of stabilizing that reach of shoreline commonly susceptible to net northerly sand transport. Sand placed in this area is highly susceptible to transport into the inlet and to the offshore areas. Stabilizing this reach of shoreline with groins would reduce the required volume along the northernmost reach of shoreline with minimal impact to the downdrift shoreline. - B-212. In sum, it is estimated from the GENESIS results that the two-groin configuration may reduce the advance fill requirement by about 12 percent. Assuming the local, average-annual sand loss rate along the John U. Lloyd shoreline is about 53,000 cubic yards per year, the two-groin alternative would require the equivalent of about 46,700 cubic yards per year of advance fill. In the net, this would reduce the annual advance fill requirement by about 6,300 cubic yards. Considering overfill and the advance fill volumes for Hollywood/Hallandale, this modified Segment III project would require 983,400 cubic yards of fill in addition to that required to reestablish the design beach. - B-213. <u>Project Costs.</u> It is estimated that the mobilization and unit cost for sand for the 2001 construction will be same for all alternatives considered (i.e., \$1,000,000 and \$9.79 per cubic yard, respectively). Likewise the cost of future sand placement is estimated to be \$15.00 per cubic yard, plus mobilization. - B-214. The cost to construct the groin field is based upon the estimated prices to place granite stone in the marine environment. Based upon recent project is south Florida similar to the proposed works, it is estimated that granite stone for T-head construction costs about \$75 per tons in place. This cost includes material purchase, transport, and placement is the design configuration. - B-215. Foundation requirements for the proposed project include both marine stone filled mattresses and a geogrid composite material. Based upon recent bid prices for similar foundation works, it is estimated that the in-place costs for marine mattresses and geogrid composite material is \$15.00 and \$2.50 per square foot. - B-216. All other project related costs such as monitoring and engineering and design and supervision and administration are identical to all modification alternatives considered in this report. - B-217. <u>Future Maintenance of Groins.</u> The groin field was designed for a 10-year storm surge event with no damage. Because the 10-year event is expected to be exceeded during the remaining 24-year project life, maintenance of the groin field will be required. Figure B-26: GENESIS results for two-groin alternative. B-218. The future maintenance requirements and costs were calculated using a probabilistic approach. The approach involves the development of a relationship between expected structure damage and storm events that exceed the design storm event. Using Table 7-9, Page 7-211 of the Shore Protection Manual (SPM, 1984), the expected structure damage for a storm event exceeding the design storm can be estimated. A probabilistic relationship between structure damage and the occurrence of a storm that exceeds the design storm is determined by tabulating damage estimates for various storm frequencies greater than the design storm. Total damages are computed by integrating the annual probability of damage over the life of the project. The cost to repair annual is assumed to be a percentage of the initial construction cost of the groin field. B-219. Table B-20 summarizes the various storms considered in this analysis and the level of damage expected from each storm event. The annual expected maintenance cost for the groin field is 1 percent of the initial groin field construction cost. B-220. <u>Cost Summary</u>. The total average annual cost to implement the modified reevaluated plan to include two groins and a jetty spur is \$4,429,000. Project costs required to implement the reevaluated authorized project were formulated using a percent rate of 6 and 1/8 for the remaining 24 years of the project life. The details of the cost estimate for this plan are included in Sub-Appendix B-6. Table B-20: Expected damage to the groin field for various storms exceeding the design storm. | Storm
Return
Period
(yrs.) | Prob.
of
Occur. | Surge
(ft) | Breaking
Wave Hgt.
(H)
(ft) | H/H _D | Damage
(%)
(from Table
7-9, SPM) | Assumed Damage (%) | |-------------------------------------|-----------------------|---------------|--------------------------------------|------------------|---|--------------------| | 10 | 0.1000 | 4.0 | 6.3 | 1.00 | 0 to 5 | 0 | | 15 | 0.0667 | 4.5 | 6.6 | 1.05 | 5 to 10 | 7.5 | | 20 | 0.0500 | 5.0 | 7.0 | 1.10 | 5 to 10 | 10 | | 35 | 0.0286 | 5.5 | 7.4 | 1.15 | 10 to 15 | 12.5 | | 50 | 0.0200 | 6.0 | 7.8 | 1.21 | 10 to 15 | 15 | | 75 | 0.0133 | 6.5 | 8.2 | 1.29 | 15 to 20 | 20 | | 100 | 0.0100 | 7.0 | 8.6 | 1.35 | 20 to 30 | 30 | #### Ten-Groin Alternative - B-221. For completeness, a ten-groin alternative is also considered to extend the shore stabilizing features of a structural field throughout the most highly erosional section of shoreline. The purpose and physical benefit of the extended groin field would be to stabilize the most highly erosional section of shoreline and apply advance fill along areas of shoreline with lower net longshore sand transport potential (i.e., south of a point some 2,800 feet south of the inlet). The ten-groin alternative would include ten T-head groins placed along about 2,800 feet of shoreline and a jetty spur. The alongshore extent of the groin field was developed to be consistent with the limits of the most highly erosional section of shoreline as described in the preceding paragraphs and detailed in Figure B-24. The location and spacing of the groins were designed following the methods outlined in the SPM (1984) and by Bodge (1998). The physical characteristics of the structures for the ten-groin alternative would be identical to those describe above for the two-groin alternative. A graphical concept of the ten-groin structure configuration is presented in Figure B-27. - B-222. Stabilizing this northern reach of shoreline with T-head groins would allow the placement of advance fill beyond the direct of the influence of the inlet. Results of the refraction/diffraction and longshore sand transport potential analysis suggest that generally uniform southerly sand transport potential develops about 2,800 feet
south of the inlet. North of that point, there is a strong acceleration in southerly sand transport potential. Such accelerations in transport usually result in highly erosional and unstable shoreline conditions. - B-223. The centroid of concentrated advance fill would be relocated approximately 1,600 feet south from that for the advance fill only alternative. The advance fill for the tengroin alternative would be configured to meet the sand feeding requirements that naturally maintain shoreline stability along the downdrift shoreline. Approximately 50 percent of the advance fill would be placed along the southern half of the groin field and the remainder would be placed along approximately 1,500 feet of shoreline immediately downdrift of the groin field. - B-224. The ten-groin project configuration was also simulated with the calibrated GENESIS model. The results of the GENESIS are presented in Figure B-28. Comparisons of the pre-project and calculated post-construction shoreline locations indicate that the ten-groin structural field, with adequate advance nourishment, would also maintain the design beach section along the along the John U. Lloyd shoreline, on average. The project configuration, however, is not expected to greatly reduce the off-site sand requirements; thus, it would not significantly reduce long-term off-site sand requirements compared to the two-groin alternative. It does, however, provide shoreline stability along the historically erosional reach of shoreline with minimal sand placement in the vicinity of the south jetty. Minimizing sand placement in the vicinity of the south jetty would reduce the potential from sand losses to the inlet. Figure B-27: Concept of ten-groin project alternative. Figure B-28: GENESIS results for ten-groin alternative. - B-225. In sum, it is estimated from the GENESIS results that the ten-groin configuration may reduce the advance fill requirement by about 22 percent. Assuming the local, average-annual sand loss rate along the John U. Lloyd shoreline is about 53,000 cubic yards per year, the ten-groin alternative would require about 41,300 cubic yards per year of advance fill. In the net, this would reduce the annual advance fill sand requirement by about 11,700 cubic yards. The advance fill volume requirement for the John U. Lloyd shoreline reach over the six-year optimum interval is estimated to be about 247,800 cubic yards. An additional 34,300 cubic yards of sand would be required for overfill at John U. Lloyd. Therefore, the total advance fill and overfill volume for Segment III with project modification would be 946,500 cubic yards. - B-226. <u>Project Costs.</u> All unit costs for the ten-groin alternative are assumed to be identical to those developed for the two-groin alternative. The economic difference between the two structural alternatives will be based solely upon the differences in the physical requirements of the two configurations. For instance, the ten-groin alternative requires less annual fill from an off-site location but would require more stone material for the added groins. The ten-groin alternative would require an estimated 22,000 tons of granite stone. - B-227. All other project related costs such as monitoring and engineering, design, and supervision and administration are also identical to all modification alternatives considered in this report. Similarly, the cost of the annual maintenance of the groins is assumed to be approximately 1 percent of the initial cost of the groins. - B-228. <u>Cost Summary</u>. The total average annual cost to implement the modified reevaluated plan with ten groins is \$4,432,000. Project costs required to implement the reevaluated authorized project were formulated using a percent rate of 6 and 1/8 for the remaining 24 years of the project life. The details of the cost estimate for this plan are included in Sub-Appendix B-5. - B-229. <u>Summary</u>. Although the ten-groin alternative demonstrates a net economic benefit (i.e., cost reduction) over the two-groin alternative, it is currently the position of the State of Florida's Department of Environmental Protection and Department of Parks and Recreation (the upland land owner) that structural stabilization of the northern 2,800 feet of the John U. Lloyd Beach State Recreation Area shoreline is not in the best interest of the State and would not be permitted. Nonetheless, the results of this analysis demonstrate the physical and economic benefits of this project configuration. However, without the consent of the State of Florida, this alternative cannot be considered for implementation at this time. ## **Mechanical Sand Bypassing at Port Everglades** - B-230. Cost-effective sand sources for Segment III beach renourishment will become more important in the future as nearby offshore sand deposits are depleted. One alternative future sand source is sand bypassing at Port Everglades. Although the economic benefit of sand bypassing is often related to reduced maintenance at navigation projects, sand bypassing at Port Everglades would provide both physical and economic benefits to the Segment III Federal Shore Protection Project. The physical benefits would include access to a reliable future sand source that is compatible with the native sediments of the Segment III shoreline and reduced sand shoaling within the Port Everglades navigation project. These latter benefits are not considered in this analysis. The economic benefits would include an overall reduction in the cost to maintain the Segment III project. - B-231. The principle benefit of sand bypassing is the reduced need for offsite sand sources to maintain the design beach section. Following the 2002 nourishment of Segments II and III, cost effective sand sources offshore of Broward County will be essentially depleted. The only other alternatives for offshore sands would be domestic deposits offshore of more northern counties (i.e. Palm Beach and Martin), Federal sand deposits offshore of Martin County, or foreign deposits from the Bahamas or other Caribbean nations. Another alternative would be trucking sand from upland areas. All of these future sand source alternatives will be very expensive compared to the cost of bypassed sand. Additionally, bypassed sand will have almost identical textural and color characteristics as the Segment III sands. - B-232. The calibrated GENESIS model and the Port Everglades sediment budget were used to evaluate the physical benefits of sand bypassing at Port Everglades. In the model it is assumed that sand could be captured and mechanically transported across the inlet at a reliable average annual rate. At present, Port Everglades is a complete littoral barrier. That is, no sand is transported across the inlet from the updrift to downdrift shoreline. Additionally, sand is lost to the inlet from the Segment III shoreline during periods of northerly sand transport. - B-233. Recent estimates suggest that sand is currently accreting along the updrift shoreline at over 65,000 cubic yards per year. Beach volume changes measured along the southern Broward County Segment II shoreline for the period between 1980 and 1996 and between 1993 and 1996 are summarized in Table B-21. Figure B-29 depicts the cumulative beach volume change from the north jetty to a point 7,000 feet north thereof. These measured shoreline changes reveal the pronounced accretion that occurs along the updrift shoreline. Most of this accretion is due to impoundment by the large shoal immediately north of the inlet. This shoal was created from side cast material from an earlier inlet-deepening project. This large shoal essentially acts as a highly effective submerged groin that impounds sand across the entire beach profile along the updrift shoreline. It is expected that the sand transport rate across this shoal is relatively low compared to typical rates of the area; thus explaining the low measured shoaling rates within the Port Everglades entrance channel. It is likewise expected that this shoal will require modification to increase the sand transport rates immediate to the inlet where bypassing activities would be potentially staged. B-234. For the purposes of this evaluation, it is assumed that approximately 44,000 cubic yards per year of sand could be routinely bypassed across the inlet (Coastal Tech., 1996). Considering the documented accretion rate along the updrift shoreline, the actual rate may be much higher. B-235. As demonstrated by the advance fill only alternative and measured shoreline change rates, it is estimated that approximately 46,700 cubic yards of sand are required to maintain the design section for the two-groin alternative. Therefore, considering the assumed bypassing rate of 44,000 cubic yards per year, the equivalent of approximately 6,600 cubic yards per year of offsite advance fill, plus overfill, would be required for this project. These numbers are, of course, expected to vary depending upon the ultimate productivity of sand bypassing operations. The advance fill was configured to maximize the benefits of sand bypassing in terms of maintaining the required design section. During the model simulations, the bypassed sand is added to the downdrift shoreline along the southern end of the groin field and immediately downdrift of the southernmost groin. The sand is added at a constant rate equivalent to 44,000 cubic yards per year. No overfill allowance is required for sand that is bypassing since it is essentially native beach material. B-236. The GENESIS simulation results for the two-groin alternative are included in Figure B-30. In this simulation, bypassed sand is discharged immediately downdrift of the southern groin. These results demonstrate the benefit of sand bypassing at Port Everglades to the Segment III shoreline but also demonstrate the potential problems with discharging bypassed sand too close to the inlet. The model results suggest that sand will be trapped along
the northern reach of shoreline and not transported to the downdrift shoreline. This situation would increase the potential for bypassed sand to be transported towards and lost to the inlet. Based upon these results, it is expected that sand must be discharged at a more southerly location. Structural stabilization of the shoreline north of a selected discharge point will be required. Table B-21: Measured beach volume change immediately north of Port Everglades (adapted from Coastal Tech., 1994). | | | | 1993-1996 | | 1980-1996 | | |-------------------------------------|----------|----------|------------|---------|------------|---------| | | | | Profile | | Profile | | | | | | Volume | Volume | Volume | Volume | | | | Distance | Change | Change | Change | Change | | | Monument | (Feet) | (cy/ft/yr) | (cy/yr) | (cy/ft/yr) | (cy/yr) | | Everglades | | | | | | | | | 78 | | | | | | | | | 1,066 | 5.6 | 5,970 | 2.5 | 2,670 | | | 79 | | | | | | | ly North of Port | | 1,121 | 8.2 | 9,190 | 3.0 | 3,360 | | | 80 | | | | | | | | | 1,082 | 12.9 | 13,960 | 6.3 | 6,820 | | | 81 | | | | | | | | | 1,043 | 10.7 | 11,160 | 8.1 | 8,450 | | ate | 82 | | | | | | | Shoreline Immediately North of Port | | 1,025 | 7.0 | 7,180 | 7.6 | 7,790 | | | 83 | | | | | | | | | 892 | 10.8 | 9,630 | 9.0 | 8,030 | | | 84 | | | | | | | | | 680 | 9.6 | 6,530 | 7.9 | 5,370 | | Ŗ | N. Jetty | | | | | | Figure B-29: Cumulative beach volume change north of Port Everglades. Figure B-30: GENESIS results for two-groin project alternative with inlet sand bypassing. B-237. Project Costs. The project cost associated with implementation of a sand bypass operation at Port Everglades would include the initial capital layout for the sand bypassing infrastructure, inlet jetty and nearshore shoal modifications, and the annual cost to bypass sand and maintain the bypassing equipment. It is expected that the bypassing infrastructure would include either fixed or mobile sand collection plant, a dedicated pipeline installed beneath the navigation channel of Port Everglades, and numerous discharge points along the southern shoreline. Discharge locations would be situated within 3,000 to 4,000 feet of the south of the south jetty. For the purposes of this investigation it is assumed that annual maintenance costs are incorporated in the unit cost of the bypassed sand. Sand bypassing with the two-groins alternative is assumed not to require any modifications to the proposed groin field. B-238. It is assumed that the initial cost to construct the sand-bypassing infrastructure would be approximately \$7,000,000. This is conservatively high compared to estimates outlined in the Port Everglades Inlet Management Plan (Coastal Tech., 1994). The unit cost of bypassed sand once the bypassing infrastructure is in place and operational is assumed to be about \$3.50 per cubic yard. B-239. The total average annual cost to implement the modified reevaluated plan with implementation of sand bypassing at Port Everglades in year six is \$4,287,000. Even considering the initial cost of the bypassing infrastructure, the proposed bypassing plan with two groins at John U. Lloyd represents an average annual cost reduction of approximately \$184,000 per year compared to the reevaluated NED plan. There is an average annual cost saving of \$142,000 per year over the two-groin no bypassing alternative. This significant cost reduction is due to the lower unit cost of bypassed sand compared to the expected cost of future off-site sand resources. The details of the cost estimate for this plan are included in Table B-5-3 (Sub-Appendix B-5). ## **SUMMARY** B-239. Based upon the average annual costs of alternate project modifications outlined in Table B-22 and results from analyses of beach monitoring data, calculated wave refraction/diffraction patterns, computed longshore sand transport potential, and a GENESIS shoreline change model, it is recommended that the NED include reconstruction of the pre-project shoreline at John U. Lloyd and reestablishment of a 50-ft extension of the ECL along the Hollywood/Hallandale shoreline. The plan shall include 6 years of advance fill placed along the previously constructed reaches of John U. Lloyd (south jetty of Port Everglades to R-94) and Hollywood/Hallandale Beach (R-101 to R-128). In addition to the renourishment of those shoreline reaches, it is recommended that beach fill transitions be constructed along the southern end of the John U. Lloyd reach and at the northern and southern ends of the Hollywood/ Hallandale reach to reduce endlosses and protect the design section. A two-groin and jetty spur structural field is also recommended for construction along the northern 700 feet of the John U. Lloyd shoreline to stabilize that section of shoreline and reduced sand losses to the Port Everglades. It is also recommended that sand bypassing be implemented at Port Everglades following construction of the recommended project to provide an alternative sand source for future maintenance of the Segment III Shore Protection Project. Implementation of sand bypassing at Port Everglades, along with construction of two groins at John U. Lloyd would reduce the average annual cost of the Segment III project to about \$4,287,000. This equates to an average annual cost savings of \$184,000 compared to the reevaluated NED plan. Table B-22: Annualized cost summary for project modifications. | Project Plan | AVERAGE ANNUAL COST | | | | | |---|---------------------|--|--|--|--| | Reevaluated NED Plan with
Added Beach Fill Tapers | \$4,471,000 | | | | | | Modifications to the Authorized Plan (R-94 to R-101) *** | | | | | | | Design Section along Dania and
Southern JUL (R-94 to R-101) | \$5,206,000 | | | | | | Modifications to the Authorized Plan (Groin Field) | | | | | | | Two-Groin Alternative | \$4,429,000 | | | | | | Ten-Groin Alternative | \$4,432,000 | | | | | | Modifications to the Authorized Plan (Bypassing) | | | | | | | Two-Groin Alternative with Future Sand Bypassing at Port Everglades | \$4,287,000 | | | | | | notes: | | | | | | GENERAL: Project benefits are the same for all alternatives included in this table, except for the project that would include a design section between R-94 and R-101 (see note below). ^{***} This project modification results in increased project costs and primary benefits. The incremental increase in primary benefits, however, is less than the incremental increase in project costs. Thus, this modification is not ## REFERENCES Bodge, K.R., 1998. "Beach Fill Stabilization with Tuned Structures: Experience in the southeastern USA and Caribbean." In: *Coastlines, Structures and Breakwaters*, N.W.H. Allsop, Ed. Thomas Telford Publishing, 1 Heron Quay, London, c. 1998 (ISBN 0-7177-2668-4); pp.82-93. Bodge, K.R., Creed, C.G., and Raichle, A.W., 1996 "Improving Input Wave Data for Use with Shoreline Change Models," *Journal of Waterway, Port, Coastal, and Ocean Engineering*, American Society of Civil Engineers, Vol. 122, No. 5, New York, NY. Borgman, L.E., Miller, M.C., Butler, H.L., and Reinhard, R.D., 1992. "Empirical Simulation of Future Hurricane Histories as a tool in Engineering and Economic Analysis," ASCE Proceedings, Civil Engineering in the Oceans V, College Station, TX, 2-5 Nov 1992. Brooks, R.M. and Brandon, W.A., 1995. Hindcast Wave Information for the U.S. Atlantic Coast: Update 1976-1993 with Hurricanes. WIS Report 33. U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS. Broward County, Erosion Prevention Division. 1978 "Broward County, Port Everglades to South County Line – Beach Erosion Control Project General & Detail Design Memorandum," Environmental Quality Control Board, June 1978. Broward County, Erosion Prevention Division., 1987 "Broward County, Port Everglades to South County Line – Beach Erosion Control Project General Design Memorandum, Addendum I," Environmental Quality Control Board, January 1987. Bruun, W.H.M., "Sea Level rise as a Cause of Shore Erosion", Leaflet No. 152, University of Florida, 1962. Coastal Tech., 1994, *Port Everglades Inlet Management Plan*, Coastal Technology Corporation, Coral Gables, FL. Ebersole, Bruce A., "Atlantic Coast Water-Level Climate", WIS Report 7, prepared for Chief of Engineers, U.S. Army Corps of Engineers, Wave Information Study, Hydraulics Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg MS, April 1982. Federal Emergency Management Agency, 1978. Flood Insurance Study, Broward County, Florida. Gravens, M.B., Kraus, N.C., and Hanson, H. 1991. "GENESIS: Generalized Model for Simulating Shoreline Change, Report 2, Workbook and System User's Manual," *Department of the Army, U.S. Army Corps of Engineers*, CERC-89-19, Report 2, Waterways Experiment Station, Vicksburg, MS. Hanson, H., and Kraus, N.C. 1989. "GENESIS: Generalized Shoreline Change Numerical Model for Engineering Use, Technical Reference," *Department of the Army, U.S. Army Corps of Engineers*, CERC-89-19, Report 2, Waterways Experiment Station, Vicksburg, MS. Hicks, S.D., L.E. Hickman Jr. and H.A. Debaugh Jr., "Sea Level Variations for the United States 1855-1980", National Ocean Service, National Oceanic and Atmospheric Administration, 1983. Hubertz, J.M., Brooks, R.M., Brandon, W.A., and Tracy, B.A. (1993). "Hindcast Wave Information for the US Atlantic Coast," *Department of the Army, U.S. Army Corps of Engineers*, WIS Report 30, Waterways Experiment Station, Vicksburg, MS. Larson M., and Kraus, N.C., 1989. "SBEACH: Numerical Model for Simulation Storm-Induced Beach Change," 2 Vols., Technical Report CERC 89-9, U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS. Kirby, J.T. and Dalrymple, R.A., 1992, "REF/DIF 1 Version 2.4, Documentation and User's Manual", CACR 92-04, Coast. Engrg. Res Center, Waterways Experiment Station, Vicksburg, MS.
NOAA, 1997, 1997 *Tide Tables: High and Low Water Predictions, East Coast of North and South America Including Greenland*, National Oceanic and Atmospheric Administration, International Marine, Camden Maine. National Research Council 1987. Responding to Changes in Sea Level, Engineering Implications. National Academy Press, Washington, D.C. Olsen Associates, Inc. and Coastal Planning and Engineering, Inc. (1998). "Feasibility Study of Structural Stabilization of Beach Fills in Broward County: Segments II and III", prepared for Broward County, Florida DNRP, August 1998. Scheffner, N.W., Mark, D.J., Blain, C.A, Westernink, J.J., and Luettich, R.A., 1994. "A tropical Storm Data Base for the East and Gulf of Mexico Coasts of the United States," Dredging research Program Report DRP-94__, USACE-WES, Vicksburg, MS. Titus, J.G., and Narayanan, V.K., 1995. *The Probability of Sea Level Rise*, U.S. Environmental Protection Agency, Washington D.C. - U.S. Army Corps of Engineers, Jacksonville District, 1990. "Broward County, Florida Port Everglades to the South County Line (Segment III) Shore Protection Project. Reevaluation Report Section 934 Study with Environmental Assessment," October 1990. - U.S. Army Corps of Engineers, 1984. *Shore Protection Manual, 4th Edition*, 2 Vols., U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, U.S. government Printing Office, Washington, D.C. - U.S. Army Corps of Engineers, Jacksonville District, 1963. "Broward County, Florida, Beach Erosion Control and Hillsboro Inlet Navigation Report." March 1963. ## SUB-APPENDIX B-1 SEGMENT III HISTORICAL BEACH PROFILE DATA ## SEGMENT III DETAILED COST ESTIMATES FOR REEVALUATING THE PROJECT WIDTH AND DETERMINING THE OPTIMAL RENOURISHMENT INTERVAL FOR THE FEDERAL PROJECT Figure B-2-1: Reevaluation of 50-yr Segment III Federal Project (25-ft Design Berm; 5-yr Interval)) | | | | | OF CONTRACT
YEAR RENOUR: | | | | STS | | | | | | | |--------------------------|-----------------------------------|-------|----------|-----------------------------|--------|--------|-------|------|---------|---------|-------|-------|-------|-------| | | | | | | projec | | | | | | | | | | | INTEREST RATE | | 6.125 | % | | | | | | | | | | | | | | | | | UNIT | | | | RE | NOURISE | HMENT Y | EAR | | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 892,090 | 6.62 | 5906 | | | | | | | | | | | RENOURISHMENT | | | | | | | | | | | | | | | | 1 | 0 | CY | 650,000 | 6.62 | 4303 | | | | | | | | | | | 2 | 5 | CY | 650,000 | 6.62 | | 4303 | | | | | | | | | | 3 | 10 | CY | 650,000 | 6.62 | | | 4303 | | | | | | | | | 4 | 15 | CY | 650,000 | 6.62 | | | | 4303 | | | | | | | | 5 | 20 | CY | 650,000 | 9.79 | | | | | 6364 | | | | | | | 6 | 25 | CY | 650,000 | 15.00 | | | | | | 9750 | | | | | | 7 | 30 | CY | 650,000 | 15.00 | | | | | | | 9750 | | | | | 8 | 35 | CY | 650,000 | 15.00 | | | | | | | | 9750 | | | | 9 | 15.00 | | | | | | | | | 9750 | | | | | | 10 | 45 | CY | 650,000 | 15.00 | | | | | | | | | | 9750 | | BEACH TILLING | | ACRE | 83.0 | 300 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | | HARDBOTTOM MITIGATION | | ACRE | 6.0 | 300,000 | 1800 | | | | | | | | | | | SUBTOTAL | | | | | 13034 | 5328 | 5328 | 5328 | 7388 | 10775 | 10775 | 10775 | 10775 | 10775 | | CONTINGENCY | | 15 | 8 | | 1955 | 799 | 799 | 799 | 1108 | 1616 | 1616 | 1616 | 1616 | 1616 | | | | | | | | | | | | | | | | | | SUBTOTAL (CONTRACT) | | | | | 14989 | 6127 | 6127 | 6127 | 8497 | 12391 | 12391 | 12391 | 12391 | 12391 | | E&D+S&A | | 15 | ક | | 2248 | 919 | 919 | 919 | 1274 | 1859 | 1859 | 1859 | 1859 | 1859 | | Das , pari | | - 13 | , | | 2210 | 323 | 323 | 313 | 12,1 | 1000 | 1033 | 1000 | 1000 | 1000 | | TOTAL CONSTRUCTION | | | | | 17237 | 7046 | 7046 | 7046 | 9771 | 14250 | 14250 | 14250 | 14250 | 14250 | | | | | SUMMA | RY-INVESTME | NT AND | ANNUAL | COSTS | | | | | | | | | TOTAL CONSTRUCTION COST | | | | | 17237 | 7046 | 7046 | 7046 | 9771 | 14250 | 14250 | 14250 | 14250 | 14250 | | INTEREST DURING CONSTRUC | | 58 | | | | | | | | | | | | | | TOTAL INVESTMENT COST | OTAL INVESTMENT COST | | | | | | 7046 | 7046 | 9771 | 14250 | 14250 | 14250 | 14250 | 14250 | | PRESENT WORTH OF EACH CO | RESENT WORTH OF EACH CONSTRUCTION | | | | | | | 2889 | 2976 | 3224 | 2395 | 1779 | 1322 | 982 | | TOTAL PRESENT WORTH | TAL PRESENT WORTH | | | | | | | | | | | | | | | AVERAGE ANNUAL COST | | | | | | | | | | | | | | | Figure B-2-2: Reevaluation of 50-yr Segment III Federal Project (25-ft Design Berm; 6-yr Interval) | | | 1 | ESTIMATE OF
6-YEA | CONTRACT ANI
R RENOURISHI
25-ft pro | MENT IN | | OSTS | | | | | | | |------------------------------|-----------------------------------|-------|----------------------|---|---------|---------|-------|-------|---------|--------|-------|-------|-------| | INTEREST RATE | | 6.125 | 왕 | | | | | | | | | | | | | | | | UNIT | | T | 1 | RENOU | RISHMEN | T YEAR | T | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 892,090 | 6.62 | 5906 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | RENOURISHMENT | | | 032,030 | 0.02 | 3300 | 1 | | 1 | | | 1 | | 1 | | 1 | 0 | CY | 780,000 | 6.62 | 5164 | | | | | | | | | | 2 | 6 | CY | 780,000 | 6.62 | 3101 | 5164 | | | | | | | | | 3 | 12 | CY | 780,000 | 6.62 | | 3101 | 5164 | | | | | | | | 4 | 18 | CY | 780,000 | 6.62 | | | | 5164 | | | | | | | 5 | 24 | CY | 780,000 | 9.79 | | | | | 7636 | | | | | | 6 | 30 | CY | 780,000 | 15.00 | | | | | | 11700 | | | | | 7 | 36 | CY | 780,000 | 15.00 | | | | | | | 11700 | | | | 8 | 42 | CY | 780,000 | 15.00 | | | | | | | | 11700 | | | 9 | 48 | | 780,000 | 15.00 | | | | | | | | | 11700 | | | | | | 300 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | | HARDBOTTOM MITIGATION | | ACRE | 8.0 | 300,000 | 2400 | | | | | | | | | | SUBTOTAL | | | | | 14495 | 6190 | 6190 | 6190 | 8662 | 12726 | 12726 | 12726 | 12726 | | CONTINGENCY | | 15 | % | | 2174 | 928 | 928 | 928 | 1299 | 1909 | 1909 | 1909 | 1909 | | SUBTOTAL (CONTRACT) | | | | | 16670 | 7118 | 7118 | 7118 | 9962 | 14635 | 14635 | 14635 | 14635 | | E&D+S&A | | 15 | % | | 2500 | 1068 | 1068 | 1068 | 1494 | 2195 | 2195 | 2195 | 2195 | | TOTAL CONSTRUCTION | | | | | 19170 | 8186 | 8186 | 8186 | 11456 | 16830 | 16830 | 16830 | 16830 | | | | | SUMMARY- | INVESTMENT A | AND ANN | UAL COS | STS | | | | | | | | TOTAL CONSTRUCTION COST | | 19170 | 8186 | 8186 | 8186 | 11456 | 16830 | 16830 | 16830 | 16830 | | | | | INTEREST DURING CONSTRUCTION | | 63 | | | | | | | | | | | | | TOTAL INVESTMENT COST | | 19233 | 8186 | 8186 | 8186 | 11456 | 16830 | 16830 | 16830 | 16830 | | | | | PRESENT WORTH OF EACH CONS | RESENT WORTH OF EACH CONSTRUCTION | | | | | | | 2808 | 2750 | 2829 | 1980 | 1386 | 970 | | TOTAL PRESENT WORTH | TAL PRESENT WORTH | | | | | | | | | | | | | | AVERAGE ANNUAL COST | RAGE ANNUAL COST | | | | | | | | | | | | | Figure B-2-3: Reevaluation of 50-yr Segment III Federal Project (25-ft Design Berm; 7-yr Interval) | | | EST | | TRACT AND CO
ENOURISHMENT
25-ft projec | INTERV | | STS | | | | | | |---------------------------|-----------------|-------|-------------|--|--------|-------|------|---------|--------|-------|-------|-------| | INTEREST RATE | | 6.125 | % | | | | | | | | | | | | | | | UNIT | | | RE | NOURISH | MENT Y | EAR | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 892,090 | 6.62 | 5906 | | | | | | | | | RENOURISHMENT | ' | | | | | 1 | | | | | | | | 1 | 0 | CY | 910,000 | 6.62 | 6024 | | | | | | | | | 2 | 7 | CY | 910,000 | 6.62 | | 6024 | | | | | | | | 3 | 14 | CY | 910,000 | 6.62 | | | 6024 | | | | | | | 4 | 21 | CY | 910,000 | 9.79 | | | | 8909 | | | | | | 5 | 28 | CY | 910,000 | 15.00 | | | | | 13650 | | | | | 6 | 35 | CY | 910,000 | 15.00 | | | | | | 13650 | | | | 7 | 42 | CY | 910,000 | 15.00 | | | | | | | 13650 | | | 8 | 49 | CY | 910,000 | 15.00 | | | | | | | | 13650 | | BEACH TILLING | ' | ACRE | 92.0 | 300 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | | HARDBOTTOM MITIGATION | | ACRE | 10.0 | 300,000 | 3000 | | | | | | | | | SUBTOTAL | | | | | 15957 | 7052 | 7052 | 9937 | 14678 | 14678 | 14678 | 14678 | | CONTINGENCY | | 15 | ક | | 2394 | 1058 | 1058 | 1490 | 2202 | 2202 | 2202 | 2202 | | SUBTOTAL (CONTRACT) | | | | | 18351 | 8110 | 8110 | 11427 | 16879 | 16879 | 16879 | 16879 | | E&D+S&A | | 15 | % | | 2753 | 1216 | 1216 | 1714 | 2532 | 2532 | 2532 | 2532 | | TOTAL CONSTRUCTION | | | | | 21104 | 9326 | 9326 | 13141 | 19411 | 19411 | 19411 | 19411 | | | | | SUMMARY-INV | ESTMENT AND | ANNUAL | COSTS | | | | | | | | TOTAL CONSTRUCTION COST | | | | | 21104 | 9326 | 9326 | 13141 | 19411 | 19411 | 19411 | 19411 | | INTEREST DURING CONSTRUCT | ION | | | | 68 | | | | | 1 | | | | TOTAL INVESTMENT COST | | | | | 21171 | 9326 | 9326 | 13141 | 19411 | 19411 | 19411 | 19411 | | PRESENT WORTH OF EACH CON | STRUCTI | ION | | | 21171 | 6151 | 4057 | 3771 | 3674 | 2423 | 1598 | 1054 | | TOTAL PRESENT WORTH | | 43902 | | | | | | | | | | | | AVERAGE ANNUAL COST | AGE ANNUAL COST | | | | | | | | | | | | Figure B-2-4: Reevaluation of 50-yr Segment III Federal Project (50-ft Design Berm; 5-yr Interval) | | | | | OF CONTRACT
YEAR RENOUR | | INTERV | | STS | | | | | | | |----------------------------|-----------------------------------|-------|-----------|----------------------------|--------|--------|-------|-------|---------|---------|-------|-------|-------|-------| | INTEREST RATE | | 6.125 | 8 | 30 10 | projec | | | | | | | | | | | | | | | UNIT | 1 |
 | RE | NOURISH | MENT YE | EAR | | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | | | | | | | | | 1 | | 1 | | | | | | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 1,381,660 | 6.62 | 9147 | | | | | | | | | | | RENOURISHMENT | | | 1 | | 1 | | ı | | ı | 1 | | | | | | 1 | 0 | CY | 650,000 | 6.62 | 4303 | | | | | | | | | | | 2 | 5 | CY | 650,000 | 6.62 | | 4303 | | | | | | | | | | 3 | 10 | CY | 650,000 | 6.62 | | | 4303 | | | | | | | | | 4 | 15 | CY | 650,000 | 6.62 | | | | 4303 | | | | | | | | 5 | 20 | CY | 650,000 | 9.79 | | | | | 6364 | | | | | | | 6 | 25 | CY | 650,000 | 15.00 | | | | | | 9750 | | | | | | 7 | 15.00 | | | | | | | 9750 | | | | | | | | 8 | 15.00 | | | | | | | | 9750 | | | | | | | 9 | 15.00 | | | | | | | | | 9750 | | | | | | 10 | 45 | CY | 650,000 | 15.00 | | | | | | | | | | 9750 | | BEACH TILLING | | ACRE | 103.5 | 300 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | | HARDBOTTOM MITIGATION | | ACRE | 13.0 | 300,000 | 3900 | | | | | | | | | | | SUBTOTAL | | | | | 18381 | 5334 | 5334 | 5334 | 7395 | 10781 | 10781 | 10781 | 10781 | 10781 | | CONTINGENCY | | 15 | ક | | 2757 | 800 | 800 | 800 | 1109 | 1617 | 1617 | 1617 | 1617 | 1617 | | | | | 1 | | | | | ļ. | | | ļ. | | ļ. | , | | SUBTOTAL (CONTRACT) | | | | | 21138 | 6134 | 6134 | 6134 | 8504 | 12398 | 12398 | 12398 | 12398 | 12398 | | E&D+S&A | | 15 | 9 | | 3171 | 920 | 920 | 920 | 1276 | 1860 | 1860 | 1860 | 1860 | 1860 | | au s s du s | | 13 | 1 | | 3272 | 720 | 720 | 320 | 1270 | 1000 | 1000 | 1000 | 1000 | 1000 | | TOTAL CONSTRUCTION | | | | | 24308 | 7054 | 7054 | 7054 | 9779 | 14258 | 14258 | 14258 | 14258 | 14258 | | | | | SUMMA | RY-INVESTME | NT AND | ANNUAL | COSTS | | | | | | | | | TOTAL CONSTRUCTION COST | | 24308 | 7054 | 7054 | 7054 | 9779 | 14258 | 14258 | 14258 | 14258 | 14258 | | | | | INTEREST DURING CONSTRUCTI | | 76 | | | | | | | | | | | | | | TOTAL INVESTMENT COST | OTAL INVESTMENT COST | | | | | | | 7054 | 9779 | 14258 | 14258 | 14258 | 14258 | 14258 | | PRESENT WORTH OF EACH CONS | RESENT WORTH OF EACH CONSTRUCTION | | | | | | | 2892 | 2978 | 3226 | 2396 | 1780 | 1322 | 982 | | TOTAL PRESENT WORTH | TAL PRESENT WORTH | | | | | | | | | | | | | | | AVERAGE ANNUAL COST | | | | | 3169 | | | | | | | | | | Figure B-2-5: Reevaluation of 50-yr Segment III Federal Project (50-ft Design Berm; 6-yr Interval) (NED Plan) | | | | ESTIMATE OF | CONTRACT ANI | D CONST | RUCTION | COSTS | | | | | | | |------------------------------|-------------------------|--------|-------------|--------------|---------|---------|-------|-------|---------|--------|-------|-------|-------| | | | | | R RENOURISH | MENT IN | | | | | | | | | | INTEREST RATE | | 6.125 | % | JU-IC PIC | Jecc | | | | | | | | | | | | ****** | | INITE | | | | RENOU | RISHMEN | T YEAR | | | | | ITEM | | UNIT | QUANTITY | UNIT
COST | 0 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | | | | | | T | | I | I | I | ı | T | I | T | T | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 1,381,660 | 6.62 | 9147 | | | | | | | | | | RENOURISHMENT | | | 1 | T | 1 | 1 | 1 | 1 | | 1 | 1 | | | | 1 | 0 | CY | 780,000 | 6.62 | 5164 | | | | | | | | | | 2 | 6 | CY | 780,000 | 6.62 | | 5164 | | | | | | | | | 3 | 12 | CY | 780,000 | 6.62 | | | 5164 | | | | | | | | 4 | 18 | CY | 780,000 | 6.62 | | | | 5164 | | | | | | | 5 | 24 | CY | 780,000 | 9.79 | | | | | 7636 | | | | | | 6 | 30 | CY | 780,000 | 15.00 | | | | | | 11700 | | | | | 7 | 36 | CY | 780,000 | 15.00 | | | | | | | 11700 | | | | 8 | 42 | CY | 780,000 | 15.00 | | | | | | | | 11700 | | | 9 | 48 | CY | 780,000 | 15.00 | | | | | | | | | 11700 | | BEACH TILLING | | | | | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | | HARDBOTTOM MITIGATION | | ACRE | 15.0 | 300,000 | 4500 | | | | | | | | | | SUBTOTAL | | | | | 19843 | 6196 | 6196 | 6196 | 8669 | 12732 | 12732 | 12732 | 12732 | | CONTINGENCY | | 15 | 8 | | 2976 | 929 | 929 | 929 | 1300 | 1910 | 1910 | 1910 | 1910 | | CONTINGENCI | | 13 | 0 | | 2970 | 929 | 929 | 929 | 1300 | 1910 | 1910 | 1910 | 1910 | | SUBTOTAL (CONTRACT) | | | | | 22819 | 7125 | 7125 | 7125 | 9969 | 14642 | 14642 | 14642 | 14642 | | E&D+S&A | | 15 | 8 | | 3423 | 1069 | 1069 | 1069 | 1495 | 2196 | 2196 | 2196 | 2196 | | | | | * | | | | | | | | | | | | TOTAL CONSTRUCTION | | | | | 26242 | 8194 | 8194 | 8194 | 11464 | 16839 | 16839 | 16839 | 16839 | | | | | SUMMARY- | INVESTMENT A | AND ANN | UAL COS | STS | | | | | | | | TOTAL CONSTRUCTION COST | TOTAL CONSTRUCTION COST | | | | | | | 8194 | 11464 | 16839 | 16839 | 16839 | 16839 | | INTEREST DURING CONSTRUCTION | | 81 | | | | | | | | | | | | | TOTAL INVESTMENT COST | | 26322 | 8194 | 8194 | 8194 | 11464 | 16839 | 16839 | 16839 | 16839 | | | | | PRESENT WORTH OF EACH CONS | TRUCT | ION | | | 26322 | 5736 | 4015 | 2811 | 2752 | 2830 | 1981 | 1387 | 971 | | TOTAL PRESENT WORTH | | | | | 48804 | AVENAGE ANNUAL CUST | AGE ANNUAL COST | | | | | | | | | | | | | Figure B-2-6: Reevaluation of 50-yr Segment III Federal Project (50-ft Design Berm; 7-yr Interval) | | | EST | | TRACT AND CC
ENOURISHMENT
50-ft projec | INTERV | | STS | | | | | | |----------------------------|--------------------|-------|-------------|--|--------|-------|-------|---------|--------|-------|-------|-------| | INTEREST RATE | | 6.125 | 8 | | | | | | | | | | | | | | | UNIT | | | RE | NOURISH | MENT Y | EAR | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 1,381,660 | 6.62 | 9147 | | | | | | | | | RENOURISHMENT | | | | | | | | | | | | | | 1 | 0 | CY | 910,000 | 6.62 | 6024 | | | | | | | | | 2 | 7 | CY | 910,000 | 6.62 | | 6024 | | | | | | | | 3 | 14 | CY | 910,000 | 6.62 | | | 6024 | | | | | | | 4 | 21 | CY | 910,000 | 9.79 | | | | 8909 | | | | | | 5 | 28 | CY | 910,000 | 15.00 | | | | | 13650 | | | | | 6 | 35 | CY | 910,000 | 15.00 | | | | | | 13650 | | | | 7 | 42 | CY | 910,000 | 15.00 | | | | | | | 13650 | | | 8 | 49 | CY | 910,000 | 15.00 | | | | | | | | 13650 | | BEACH TILLING | | ACRE | 112.5 | 300 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | | HARDBOTTOM MITIGATION | | ACRE | 17.0 | 300,000 | 5100 | | | | | | | | | | | | | | | | | | | I | | | | SUBTOTAL | - | | | | 21305 | 7058 | 7058 | 9943 | 14684 | 14684 | 14684 | 14684 | | CONTINGENCY | | 15 | % | | 3196 | 1059 | 1059 | 1491 | 2203 | 2203 | 2203 | 2203 | | SUBTOTAL (CONTRACT) | | | | | 24500 | 8117 | 8117 | 11434 | 16886 | 16886 | 16886 | 16886 | | E&D+S&A | | 15 | % | | 3675 | 1217 | 1217 | 1715 | 2533 | 2533 | 2533 | 2533 | | TOTAL CONSTRUCTION | | | | | 28175 | 9334 | 9334 | 13149 | 19419 | 19419 | 19419 | 19419 | | | | | SUMMARY-INV | ESTMENT AND | ANNUAL | COSTS | | | | | | | | TOTAL CONSTRUCTION COST | | 28175 | 9334 | 9334 | 13149 | 19419 | 19419 | 19419 | 19419 | | | | | INTEREST DURING CONSTRUCTI | ON | | | | 86 | | | | | | | | | TOTAL INVESTMENT COST | | | | | 28261 | 9334 | 9334 | 13149 | 19419 | 19419 | 19419 | 19419 | | PRESENT WORTH OF EACH CONS | TRUCTI | ION | | | 28261 | 6157 | 4061 | 3773 | 3676 | 2424 | 1599 | 1055 | | TOTAL PRESENT WORTH | OTAL PRESENT WORTH | | | | | | | | | | | | | AVERAGE ANNUAL COST | AGE ANNUAL COST | | | | | | | | | | | | Figure B-2-7: Reevaluation of 50-yr Segment III Federal Project (75-ft Design Berm; 5-yr Interval) | | | | | OF CONTRACT
YEAR RENOUR
75-ft | | INTERV | | STS | | | | | | | |----------------------------|-----------------------------------|-------|--|-------------------------------------|---------------|----------|-------|-------|---------|--------|-------|-------|--|----------| | INTEREST RATE | | 6.125 | 8 | | 1 | | | | | | | | | | | | | | | UNIT | | | | RE | NOURISH | MENT Y | EAR | | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | | MODILITANTION | | TOD | 1 | 1 000 000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | MOBILIZATION | | JOB | | 1,000,000 | | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 1,907,800 | 6.62 | 12630 | L | | | | 1 | | | | \vdash | | RENOURISHMENT | Τ. | CV | 650,000 | 6.60 | 4202 | | | | | | | | | | | 1 | 0 | CY | 650,000 | 6.62 | 4303 | 4202 | | | | | | | | | | 2 | 5 | CY | 650,000 | 6.62 | | 4303 | | | | | | | | | | 3 | 10 | CY | 650,000 | 6.62 | | | 4303 | 4202 | | | | | | | | 4 | 15 | CY | 650,000 | 6.62 | | | - | 4303 | 6264 | - | | | | | | 5 | 20 | CY | 650,000
650,000 | 9.79 | | | - | | 6364 | 0750 | | | | | | 6 | 25
30 | CY | 15.00 | | | - | | | 9750 | 0750 | | | | | | 7 | 15.00 | | | | | | | 9750 | | | | | | | | 8 | 15.00 | | - | | | | | | 9750 | | | | | | | | 9 40 CY 650,000 15. | | | | | | | | | | | | 9750 | | | | 10 45 CY 650,000 15.00 | | | | | H | | | | | | | | 9750 | | BEACH TILLING | | ACRE | 124.5 | 300 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | | HARDBOTTOM MITIGATION | | ACRE | 28.0 | 300,000 | 8400 | | | | | | | | | | | SUBTOTAL | | | | | 26370 | 5340 | 5340 | 5340 | 7401 | 10787 | 10787 | 10787 | 10787 | 10787 | | CONTINGENCY | | 15 | % | | 3955 | 801 | 801 | 801 | 1110 | 1618 | 1618 | 1618 | 1618 | 1618 | | | | | | | | | | | | | | | | | | SUBTOTAL (CONTRACT) | | | | | 30325 | 6141 | 6141 | 6141 | 8511 | 12405 | 12405 | 12405 | 12405 | 12405 | | E&D+S&A | | 15 | 9 | | 4549 | 921 | 921 | 921 | 1277 | 1861 | 1861 | 1861 | 1861 | 1861 | | EXUTSXA | | | 9 | | 4343 | 921 | 921 | 321 | 12// | 1001 | 1001 | 1001 | 1001 | 1001 | | TOTAL CONSTRUCTION | | | | | 34874 | 7063 | 7063 | 7063 | 9788 | 14266 | 14266 | 14266 | 14266 | 14266 | | | | | SUMMA |
RY-INVESTME | NT AND | ANNUAL | COSTS | | | | | | | | | TOTAL CONSTRUCTION COST | | 34874 | 7063 | 7063 | 7063 | 9788 | 14266 | 14266 | 14266 | 14266 | 14266 | | | | | INTEREST DURING CONSTRUCT | | 95 | | | | | | | | | | | | | | TOTAL INVESTMENT COST | | | | | 34970 | 7063 | 7063 | 7063 | 9788 | 14266 | 14266 | 14266 | 14266 | 14266 | | PRESENT WORTH OF EACH CONS | RESENT WORTH OF EACH CONSTRUCTION | | | | | | | 2895 | 2981 | 3228 | 2398 | 1781 | 1323 | 983 | | TOTAL PRESENT WORTH | TAL PRESENT WORTH | | | | | | | | | | | | | | | AVERAGE ANNUAL COST | | | | | 59702
3854 | | | | | | | | | | | WADIWOR WINNWH CODI | AGE ANNUAL COST | | | | | | | | | | | | | | Figure B-2-8: Reevaluation of 50-yr Segment III Federal Project (75-ft Design Berm; 6-yr Interval) | | | | ESTIMATE OF
6-YEA | CONTRACT AN:
R RENOURISH | | | COSTS | | | | | | | |---------------------------|-----------------------------------|-------|----------------------|-----------------------------|---------|---------|-------|--------|---------|--------|-------|-------|-------| | | | | | 75-ft pr | oject | | | | | | | | | | INTEREST RATE | | 6.125 | 왕 | T | | | | | | | | | | | | | | | UNIT | | | r | RENOUF | RISHMEN | T YEAR | I | | I | | ITEM | | UNIT | QUANTITY | COST | 0 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 1,907,800 | 6.62 | 12630 | | | | | | | | | | RENOURISHMENT | | | | 1 | | | | | | | | | | | 1 | 0 | CY | 780,000 | 6.62 | 5164 | | | | | | | | | | 2 | 6 | CY | 780,000 | 6.62 | | 5164 | | | | | | | | | 3 | 12 | CY | 780,000 | 6.62 | | | 5164 | | | | | | | | 4 | 18 | CY | 780,000 | 6.62 | | | | 5164 | | | | | | | 5 | 24 | CY | 780,000 | 9.79 | | | | | 7636 | | | | | | 6 | 30 | CY | 780,000 | 15.00 | | | | | | 11700 | | | | | 7 | 36 | CY | 780,000 | 15.00 | | | | | | | 11700 | | | | 8 | 42 | CY | 780,000 | 15.00 | | | | | | | | 11700 | | | 9 | 48 | CY | 780,000 | 15.00 | | | | | | | | | 11700 | | BEACH TILLING | | ACRE | 129.0 | 300 | 39 | 39 | 39 | 39 | 39 | 39 | 39 | 39 | 39 | | HARDBOTTOM MITIGATION | | ACRE | 30.0 | 300,000 | 9000 | | | | | | | | | | SUBTOTAL | | | | | 27832 | 6202 | 6202 | 6202 | 8675 | 12739 | 12739 | 12739 | 12739 | | CONTINGENCY | | 15 | 8 | | 4175 | 930 | 930 | 930 | 1301 | 1911 | 1911 | 1911 | 1911 | | | | | | | | | | | ı | | 1 | 1 | 1 | | SUBTOTAL (CONTRACT) | | | | | 32007 | 7133 | 7133 | 7133 | 9976 | 14650 | 14650 | 14650 | 14650 | | E&D+S&A | | 15 | 왕 | | 4801 | 1070 | 1070 | 1070 | 1496 | 2197 | 2197 | 2197 | 2197 | | TOTAL GOVERNMENTON | | | | | 26000 | 0000 | 0000 | 0003 | 11452 | 16045 | 16045 | 16045 | 16045 | | TOTAL CONSTRUCTION | | | | | 36808 | 8203 | 8203 | 8203 | 11473 | 16847 | 16847 | 16847 | 16847 | | | | | SUMMARY- | INVESTMENT . | AND ANN | JAL COS | TS | | | | | | | | TOTAL CONSTRUCTION COST | | | | | 36808 | 8203 | 8203 | 8203 | 11473 | 16847 | 16847 | 16847 | 16847 | | INTEREST DURING CONSTRUCT | ION | | | | 100 | | | | | | | | | | TOTAL INVESTMENT COST | TOTAL INVESTMENT COST | | | | | | 8203 | 8203 | 11473 | 16847 | 16847 | 16847 | 16847 | | PRESENT WORTH OF EACH CON | RESENT WORTH OF EACH CONSTRUCTION | | | | | | | 2813 | 2754 | 2831 | 1982 | 1387 | 971 | | TOTAL PRESENT WORTH | TAL PRESENT WORTH | | | | | | | | | | | | | | AVERAGE ANNUAL COST | | | | | | | | | | | | | | Figure B-2-9: Reevaluation of 50-yr Segment III Federal Project (75-ft Design Berm; 7-yr Interval) | | | EST | | TRACT AND CC
ENOURISHMENT
75-ft projec | INTERV | | STS | | | | | | |------------------------------|-------------------|-------|-------------|--|--------|-------|------|---------|---------|-------|-------|-------| | INTEREST RATE | | 6.125 | % | | | | | | | | | | | | | | | UNIT | | | RE | NOURISH | MENT YI | EAR | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 1,907,800 | 6.62 | 12630 | | | | | | | | | RENOURISHMENT | | | | | | | | | | | | | | 1 | 0 | CY | 910,000 | 6.62 | 6024 | | | | | | | | | 2 | 7 | CY | 910,000 | 6.62 | | 6024 | | | | | | | | 3 | 14 | CY | 910,000 | 6.62 | | | 6024 | | | | | | | 4 | 21 | CY | 910,000 | 9.79 | | | | 8909 | | | | | | 5 | 28 | CY | 910,000 | 15.00 | | | | | 13650 | | | | | 6 | 35 | CY | 910,000 | 15.00 | | | | | | 13650 | | | | 7 | 42 | CY | 910,000 | 15.00 | | | | | | | 13650 | | | 8 | 49 | CY | 910,000 | 15.00 | | | | | | | | 13650 | | BEACH TILLING | | ACRE | 133.5 | 300 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | | HARDBOTTOM MITIGATION | | ACRE | 32.0 | 300,000 | 9600 | | | | | | | | | SUBTOTAL | | | | | 29294 | 7064 | 7064 | 9949 | 14690 | 14690 | 14690 | 14690 | | CONTINGENCY | | 15 | 8 | | 4394 | 1060 | 1060 | 1492 | 2204 | 2204 | 2204 | 2204 | | SUBTOTAL (CONTRACT) | | | | | 33688 | 8124 | 8124 | 11441 | 16894 | 16894 | 16894 | 16894 | | SUBTUTAL (CONTRACT) | | | | | 33000 | 0124 | 0124 | 11441 | 10094 | 10094 | 10094 | 10094 | | E&D+S&A | | 15 | ૪ | | 5053 | 1219 | 1219 | 1716 | 2534 | 2534 | 2534 | 2534 | | TOTAL CONSTRUCTION | | | | | 38741 | 9342 | 9342 | 13157 | 19428 | 19428 | 19428 | 19428 | | | | | SUMMARY-INV | ESTMENT AND | ANNUAL | COSTS | | | | | | | | TOTAL CONSTRUCTION COST | | | | | 38741 | 9342 | 9342 | 13157 | 19428 | 19428 | 19428 | 19428 | | INTEREST DURING CONSTRUCTION | ON | | | | 104 | | | | | | | | | TOTAL INVESTMENT COST | | | | | 38846 | 9342 | 9342 | 13157 | 19428 | 19428 | 19428 | 19428 | | PRESENT WORTH OF EACH CONS | TRUCT | ION | | | 38846 | 6162 | 4065 | 3776 | 3677 | 2425 | 1600 | 1055 | | TOTAL PRESENT WORTH | TAL PRESENT WORTH | | | | | | | | | | | | | AVERAGE ANNUAL COST | AGE ANNUAL COST | | | | | | | | | | | | ## SEGMENT III DETAILED COST ESTIMATES FOR EVALUATION OF THE JOHN U. LLOYD REACH AS A SEPARABLE PROJECT ELEMENT Figure B-3-1: Cost to implement JUL periodic nourishment only as separable project element. | : | | | ACT AND CONS | | STS | | | | |--------------------------|----------|-----------|--------------|--------------|-------|------------|---------|-------| | INTEREST RATE | | 6.125 | % | | 17.0 | MOLIB I GH | IMENT Y | Z A D | | ITEM | | UNIT | QUANTITY | UNIT
COST | 0 | 6 | 12 | 18 | | MOBILIZATION | | LS | 1 | 250,000 | 250 | 250 | 250 | 250 | | INITIAL FILL | | CY | 120,600 | 9.79 | 1181 | | | | | RENOURISHMENT | | | | | | | 1 | | | 2 | 0 | CY | 362,500 | 9.79 | 3549 | | | | | 3 | 6 | CY | 362,500 | 15.00 | | 5438 | | | | 4 | 12 | CY | 362,500 | 15.00 | | | 5438 | | | 5 | 18 | CY | 362,500 | 15.00 | | | | 5438 | | BEACH TILLING | | ACRE | 15.0 | 300 | 5 | 5 | 5 | 5 | | HARDBOTTOM MITIGATION | | ACRE | 5.0 | 300,000 | 1500 | | | | | SUBTOTAL | | | | | 6484 | 5692 | 5692 | 5692 | | CONTINGENCY | | 15 | % | | 973 | 854 | 854 | 854 | | SUBTOTAL (CONTRACT) | | | | | 7457 | 6546 | 6546 | 6546 | | TOTAL CONSTRUCTION | | | | | 7457 | 6546 | 6546 | 6546 | | | SUMMA | ARY-INVES | TMENT AND AN | NUAL COSTS | | | | | | TOTAL INVESTMENT COST | | | | | 7457 | 6546 | 6546 | 6546 | | PRESENT WORTH OF EACH CO | NSTRUCTI | ON | | | 7457 | 4582 | 3207 | 2245 | | TOTAL PRESENT WORTH | | | | | 17491 | | | | | AVERAGE ANNUAL COST | | | | | 1410 | | | | Figure B-3-2: Cost to implement 25-ft design berm at JUL as separable project element. | 1 | | | ACT AND CONS | | STS | | | | |--------------------------|----------|-----------|--------------|--------------|-------|------------|---------|--------| | INTEREST RATE | | 6.125 | % | | PFI | JOITR T SH | IMENT Y | FAR | | ITEM | | UNIT | QUANTITY | UNIT
COST | 0 | 6 | 12 | 18 | | MOBILIZATION | | LS | 1 | 250,000 | 250 | 250 | 250 | 250 | | INITIAL FILL | | CY | 215,000 | 9.79 | 2105 | | | | | RENOURISHMENT | | | | | | | I. | ı | | 2 | 0 | CY | 409,000 | 9.79 | 4004 | | | | | 3 | 6 | CY | 409,000 | 15.00 | | 6135 | | | | 4 | 12 | CY | 409,000 | 15.00 | | | 6135 | | | 5 | 18 | CY | 409,000 | 15.00 | | | | 6135 | | BEACH TILLING | | ACRE | 30.0 | 300 | 9 | 9 | 9 | 9 | | HARDBOTTOM MITIGATION | | ACRE | 8.5 | 300,000 | 2550 | | | | | | | | | | | | | 409000 | | SUBTOTAL | | | | | 8918 | 6394 | 6394 | 6394 | | CONTINGENCY | | 15 | ે | | 1338 | 959 | 959 | 959 | | SUBTOTAL (CONTRACT) | | | | | 10256 | 7353 | 7353 | 7353 | | TOTAL CONSTRUCTION | | | | | 10256 | 7353 | 7353 | 7353 | | | SUMMA | ARY-INVES | TMENT AND AN | NUAL COSTS | | | | | | TOTAL INVESTMENT COST | | | | | 10256 | 7353 | 7353 | 7353 | | PRESENT WORTH OF EACH CO | NSTRUCTI | ON | | | 10256 | 5147 | 3603 | 2522 | | TOTAL PRESENT WORTH | | | | | 21528 | | | | | AVERAGE ANNUAL COST | | | | | 1735 | | | | Figure B-3-3: Cost to implement 50-ft design berm at JUL as separable project element. | F | | | RACT AND CONS | | STS | | | | |---------------------------|----------|-----------|---------------|--|-------|-------------|----------|-------| | INTEREST RATE | | 6.125 | % | | DE | VIOLID T CI | IMENTE M | E A D | | ITEM | | UNIT | QUANTITY | COST 0 6 12 1 250,000 250 250 250 34,000 9.79 2585 33,000 15.00 6495 33,000 15.00 6499 45.0 300 14 14 14 10.0 300,000 3000 10087 6759 6759 1513 1014 1014 11600 7772 7772 11600 7772 7772 | | ı | 18 | | | MOBILIZATION | | LS | 1 | 250,000 | 250 | 250 | 250 | 250 | | INITIAL FILL | | CY | 264,000 | 9.79 | 2585 | | | | | RENOURISHMENT | " | | | | | | | | | 2 | 0 | CY | 433,000 | 9.79 | 4239 | | | | | 3 | 6 | CY | 433,000 | 15.00 | | 6495 | | | | 4 | 12 | CY | 433,000 | 15.00 | | | 6495 | | | 5 | 18 | CY | 433,000 | 15.00 | | | | 6495 | | BEACH TILLING | | ACRE | 45.0 | 300 | 14 | 14 | 14 | 14 | | HARDBOTTOM MITIGATION | | ACRE | 10.0 | 300,000 | 3000 | | | | | SUBTOTAL | | | | | 10087 | 6759 | 6759 | 6759 | | CONTINGENCY | | 15 | % | | 1513 | 1014 | 1014 | 1014 | | SUBTOTAL (CONTRACT)
 | | | | 11600 | 7772 | 7772 | 7772 | | TOTAL CONSTRUCTION | | | | | 11600 | 7772 | 7772 | 7772 | | | SUMMA | ARY-INVES | STMENT AND AN | NUAL COSTS | | | | | | TOTAL INVESTMENT COST | | | | | 11600 | 7772 | 7772 | 7772 | | PRESENT WORTH OF EACH COL | NSTRUCTI | ON | | | 11600 | 5441 | 3808 | 2666 | | TOTAL PRESENT WORTH | | | | | 23515 | | | | | AVERAGE ANNUAL COST | | | | | 1895 | | | | ## SEGMENT III DETAILED COST ESTIMATES FOR IMPLEMENTATION OF THE REEVALUATED PLAN AND DETERMINING THE OPTIMAL RENOURISHMENT INTERVAL Figure B-4-1: Implementation of Segment III Reevaluated NED Plan (24-yr; 5-yr Interval) | E | ESTIN | 5-YEAR | ONTRACT AND
RENOURISHME
LAN IMPLEMEN | NT INTERVAL | 1 COSTS | | | | | | |------------------------------------|-------|---------------|--|----------------|---------|--------------------|-------|-------|-------|--| | INTEREST RATE | | 6.125 | % | | | | | | | | | | | | | UNIT | _ | RENOURISHMENT YEAR | | | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 5 | 10 | 15 | 20 | | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | 1000 | | | INITIAL FILL | | CY | 557,600 | 9.79 | 5459 | | | | | | | RENOURISHMENT | | | | | • | | | | | | | 2 | 0 | CY | 877,300 | 9.79 | 8589 | | | | | | | 3 | 5 | CY | 877,300 | 15.00 | | 13160 | | | | | | 4 | 10 | CY | 877,300 | 15.00 | | | 13160 | | | | | 5 | 15 | CY | 877,300 | 15.00 | | | | 13160 | | | | 6 | 20 | CY | 877,300 | 15.00 | | | | | 13160 | | | BEACH TILLING | | ACRE | 110.5 | 300 | 33 | 33 | 33 | 33 | 33 | | | HARDBOTTOM MITIGATION | | ACRE | 6.25 | 300,000 | 1875 | | | | | | | SUBTOTAL | | | | | 16956 | 14193 | 14193 | 14193 | 14193 | | | CONTINGENCY | | 15 | % | | 2543 | 2129 | 2129 | 2129 | 2129 | | | | | | | | | | | | | | | SUBTOTAL (CONTRACT) | | | | | 19499 | 16322 | 16322 | 16322 | 16322 | | | EASEMENTS | | JOB | 1 | 250,000 | 250 | | | | | | | ENVIR. MONITORING | | JOB | 1 | 275,000 | 275 | 275 | 275 | 275 | 275 | | | GEOTECHNICAL STUDIES | | JOB | 1 | 190,000 | 190 | 190 | 190 | 190 | 190 | | | E&D+S&A | | JOB | 1 | 1,342,000 | 1342 | 1342 | 1342 | 1342 | 1342 | | | TOTAL CONSTRUCTION | | | | | 21556 | 18129 | 18129 | 18129 | 18129 | | | | c | STIMMARY - TI | NVESTMENT AN | D ANNIIAI. COS | | | | | | | | | | JOHNARCI II | WEST-HEIVE AN | D ANNOAL COL | 1 | | | | | | | TOTAL CONSTRUCTION COST | | | | | 21556 | 18129 | 18129 | 18129 | 18129 | | | INTEREST DURING CONSTRUCTION | N | | | | 78 | | | | | | | TOTAL INVESTMENT COST | | | | | 21635 | 18129 | 18129 | 18129 | 18129 | | | PRESENT WORTH OF EACH CONSTRUCTION | | | | | 21635 | 13467 | 10004 | 7432 | 5521 | | | TOTAL PRESENT WORTH | | | | | 58059 | | | | | | | AVERAGE ANNUAL COST | | | | | 4680 | | | | | | Figure B-4-2: Implementation of Segment III Reevaluated NED Plan (24-yr; 6-yr Interval) | ES | | -YEAR REN | ACT AND CONS | NTERVAL | STS | | | | |------------------------------|---------|-----------|--------------|------------|---------------|---------------|---------------|---------------| | INTEREST RATE | | 6.125 | 96 | T | | | | | | | | | | UNIT | RE | NOURISH | MENT Y | EAR | | ITEM | | UNIT | QUANTITY | COST | 0 | 6 | 12 | 18 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 557,600 | 9.79 | 5459 | | | | | RENOURISHMENT | | | 11. | 1 | | | | | | 2 | 0 | CY | 1,025,300 | 9.79 | 10038 | | | | | 3 | 6 | CY | 1,025,300 | 15.00 | | 15380 | | | | 4 | 12 | CY | 1,025,300 | 15.00 | | | 15380 | | | 5 | 18 | CY | 1,025,300 | 15.00 | | | | 15380 | | BEACH TILLING | · | ACRE | 115.0 | 300 | 35 | 35 | 35 | 35 | | HARDBOTTOM MITIGATION | | ACRE | 7.56 | 300,000 | 2268 | | | | | SUBTOTAL
CONTINGENCY | | 15 | % | | 18799
2820 | 16414
2462 | 16414
2462 | 16414
2462 | | SUBTOTAL (CONTRACT) | | | | | 21619 | 18876 | 18876 | 18876 | | EASEMENTS | | JOB | 1 | 250,000 | 250 | | | | | ENVIR. MONITORING | | JOB | 1 | 275,000 | 275 | 275 | 275 | 275 | | GEOTECHNICAL STUDIES | | JOB | 1 | 190,000 | 190 | 190 | 190 | 190 | | E&D+S&A | | JOB | 1 | 1,342,000 | 1342 | 1342 | 1342 | 1342 | | | | | | | | | | | | TOTAL CONSTRUCTION | | | | | 23676 | 20683 | 20683 | 20683 | | | SUMM | ARY-INVES | TMENT AND AN | NUAL COSTS | | | | | | TOTAL CONSTRUCTION COST | | | | | 23676 | 20683 | 20683 | 20683 | | INTEREST DURING CONSTRUCTION | | | | | 86 | | | | | TOTAL INVESTMENT COST | | | | | 23762 | 20683 | 20683 | 20683 | | PRESENT WORTH OF EACH CON | STRUCTI | ION | | | 23762 | 14478 | 10135 | 7094 | | TOTAL PRESENT WORTH | | | | | 55469 | | | | | AVERAGE ANNUAL COST | | | | | 4471 | | | | Figure B-4-3: Implementation of Segment III Reevaluated NED Plan (24-yr; 7-yr Interval) | | | | NOURISHMENT I | | | | | | |-----------------------------|-------|----------|---------------|------------|-------|---------|-------|-------| | INTEREST RATE | | 6.125 | % | · | | | | | | | | | | UNIT | REI | NOURISH | EAR | | | ITEM | | UNIT | QUANTITY | COST | 0 | 7 14 | | 21 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 557,600 | 9.79 | 5459 | | | | | RENOURISHMENT | | | | | | | | | | 2 | 0 | CY | 1,173,300 | 9.79 | 11487 | | | | | 3 | 7 | CY | 1,173,300 | 15.00 | | 17600 | | | | 4 | 14 | CY | 1,173,300 | 15.00 | | | 17600 | | | 5 | 21 | CY | 1,173,300 | 15.00 | | | | 17600 | | BEACH TILLING | | ACRE | 119.5 | 300 | 36 | 36 | 36 | 36 | | HARDBOTTOM MITIGATION | | ACRE | 9.50 | 300,000 | 2850 | | | | | | | | | | | | | | | SUBTOTAL | | | | | 20831 | 18635 | 18635 | 18635 | | CONTINGENCY | | 15 | % | | 3125 | 2795 | 2795 | 2795 | | SUBTOTAL (CONTRACT) | | | | | 23956 | 21431 | 21431 | 21431 | | EASEMENTS | | JOB | 1 | 250,000 | 250 | | | | | ENVIR. MONITORING | | JOB | 1 | 275,000 | 275 | 275 | 275 | 275 | | GEOTECHNICAL STUDIES | | JOB | 1 | 190,000 | 190 | 190 | 190 | 190 | | E&D+S&A | | JOB | 1 | 1,342,000 | 1342 | 1342 | 1342 | 1342 | | | | | | | | | | | | TOTAL CONSTRUCTION | | | | | 26013 | 23238 | 23238 | 23238 | | | SUMM | ARY-INVE | STMENT AND AN | NUAL COSTS | | | | | | TOTAL CONSTRUCTION COST | | | | | 26013 | 23238 | 23238 | 23238 | | INTEREST DURING CONSTRUCTIO | N | | | | 94 | | | | | TOTAL INVESTMENT COST | | | | | 26107 | 23238 | 23238 | 2323 | | PRESENT WORTH OF EACH CONST | 'RUCT | ION | | | 26107 | 15327 | 10110 | 6668 | | TOTAL PRESENT WORTH | | | | | 58213 | | | | | | | | | | 4692 | | | | #### SEGMENT III DETAILED COST ESTIMATE FOR PROJECT MODIFICATION THAT CONSISTS OF CONSTRUCTING A FULL DESIGN BEACH SECTION ALONG DANIA AND SOUTHERN JOHN U. LLOYD Figure B-5-1: Implementation of Segment III NED Plan with modification of a full design section along southern John U. Lloyd and Dania Beach shorelines. | EST | | | RACT AND CONS | | STS | | | | |-------------------------------|-------|-----------|---------------|------------|-------------------|-------|-------|-------| | INTEREST RATE | | 6.125 | ્રિક | | | | | | | INIERESI RAIE | | 0.123 | 70 | | RENOURISHMENT YE. | | | סגי | | ITEM | | UNIT | QUANTITY | UNIT | 0 | 6 | | | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 797,600 | 9.79 | 7809 | | | | | RENOURISHMENT | | | | ı | 1 | 1 | 1 | | | 2 | 0 | CY | 1,075,300 | 9.79 | 10527 | | | | | 3 | 6 | CY | 1,075,300 | 15.00 | | 16130 | | | | 4 | 12 | CY | 1,075,300 | 15.00 | | | 16130 | | | 5 | 18 | CY | 1,075,300 | 15.00 | | | | 16130 | | BEACH TILLING | | ACRE | 140.0 | 300 | 42 | 42 | 42 | 42 | | HARDBOTTOM MITIGATION | | ACRE | 20.6 | 300,000 | 6180 | | | | | | | | | | | | | | | SUBTOTAL | | | | | 25558 | 17172 | 17172 | 17172 | | CONTINGENCY | | 15 | % | | 3834 | 2576 | 2576 | 2576 | | | | | • | | | | | | | SUBTOTAL (CONTRACT) | | | | | 29391 | 19747 | 19747 | 19747 | | | | | | | | | | | | EASEMENTS | | JOB | 1 | 250,000 | 250 | | | | | ENVIR. MONITORING | | JOB | 1 | 275,000 | 275 | 275 | 275 | 275 | | GEOTECHNICAL STUDIES | | JOB | 1 | 190,000 | 190 | 190 | 190 | 190 | | E&D+S&A | | JOB | 1 | 1,342,000 | 1342 | 1342 | 1342 | 1342 | | | | | | | | | | | | TOTAL CONSTRUCTION | | | | | 31448 | 21554 | 21554 | 21554 | | | SUM | MARY-INVE | STMENT AND AN | NUAL COSTS | | | | | | TOTAL CONSTRUCTION COST | | | | | 31448 | 21554 | 21554 | 21554 | | INTEREST DURING CONSTRUCTION | | | | | 101 | | | | | TOTAL INVESTMENT COST | | | | | 31550 | 21554 | 21554 | 21554 | | PRESENT WORTH OF EACH CONSTRU | JCTI(| ON | | | 31550 | 15088 | 10561 | 7393 | | TOTAL PRESENT WORTH | | | | | 64592 | | | | | AVERAGE ANNUAL COST | | | | | 5206 | | | | #### SEGMENT III DETAILED COST ESTIMATES FOR IMPLEMENTATION OF THE REEVALUATED FEDERAL PROJECT WITH GROINS AND FUTURE SAND BYPASSING MODIFICATIONS Figure B-6-1: Implementation of Segment III NED Plan with two groins and a jetty spur immediately downdrfit of Port Everglades. | EST | 'IMAT' | E OF CONTE | RACT AND CONS | TRUCTION COS | TS | | | | |-------------------------------|--------|------------|---------------|--------------|-------|--------------------|-------|-------| | | (| 6-YEAR REN | NOURISHMENT I | NTERVAL | | | | | | INTEREST RATE | | 6.125 | ફ | | | | | | | | | | | UNIT | RE | RENOURISHMENT YEAR | | | | ITEM | | UNIT | QUANTITY | COST | 0 | 6 | 12 | 18 | | | | | 1 | | 1 | | | | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 557,600 | 9.79 | 5459 | | | | | RENOURISHMENT | | | | | | | | | | 2 | 0 | CY | 982,400 | 9.79 | 9618 | | | | | 3 | 6 | CY | 982,400 | 15.00 | | 14736 | | | | 4 | 12 | CY | 982,400 | 15.00 | | | 14736 | | | 5 | 18 | CY | 982,400 | 15.00 | | | | 14736 | | BEACH TILLING | | ACRE | 115.0 | 300 | 35 | 35 | 35 | 35 | | HARDBOTTOM MITIGATION | | ACRE | 7.56 | 300,000 | 2268 | | | | | GROINS | | TONS | 5,300 | 75.0 | 398 | 44 | 44 | 44 | | GROIN FOUNDATION (Mattress) | | sq.ft. | 22,000 | 15.0 | 330 | | | | | | | | | | T | | | | | SUBTOTAL | | | I | | 19107 | 15814 | 15814 | 15814 | | CONTINGENCY | | 15 | ે ક | | 2866 | 2372 | 2372 | 2372 | | SUBTOTAL (CONTRACT) | | | | | 21973 | 18186 | 18186 | 18186 | | EASEMENTS | | JOB
| 1 | 437,500 | 438 | | | | | ENVIR. MONITORING | | JOB | 1 | 275,000 | 275 | 275 | 275 | 275 | | GEOTECHNICAL STUDIES | | JOB | 1 | 190,000 | 190 | 190 | 190 | 190 | | E&D+S&A | | JOB | 1 | 1,342,000 | 1342 | 1342 | 1342 | 1342 | | <u> </u> | | 002 | | 1/312/000 | 1312 | 1312 | 1312 | | | TOTAL CONSTRUCTION | | | | | 24217 | 19993 | 19993 | 19993 | | | SUMI | MARY-INVES | STMENT AND AN | NUAL COSTS | | | | | | TOTAL CONSTRUCTION COST | | | | | 24217 | 19993 | 19993 | 19993 | | INTEREST DURING CONSTRUCTION | | | | | 84 | | | | | TOTAL INVESTMENT COST | | | | | 24301 | 19993 | 19993 | 19993 | | PRESENT WORTH OF EACH CONSTRU | JCTIO | N | | | 24301 | 13995 | 9797 | 6857 | | TOTAL PRESENT WORTH | | | | | 54950 | | | | | AVERAGE ANNUAL COST | | | | | 4429 | | | | Figure B-6-2: Implementation of Segment III NED Plan with ten groins and a jetty spur immediately downdrift of Port Everglades. | EST | IMATE | OF CONTR | RACT AND CONST | TRUCTION COST | rs | | | | |-------------------------------|--------|-------------|-----------------|---------------|---------|---------|-------|-------| | | 6 | -YEAR REN | IOURISHMENT II | NTERVAL | | | | | | INTEREST RATE | | 6.125 | ૪ | | | | | | | | | | | UNIT | RE | NOURISH | AR | | | ITEM | | UNIT | QUANTITY | COST | 0 | 6 | 12 | 18 | | MODII 177 MITON | | TOD | 1 | 1 000 000 | 1000 | 1000 | 1000 | 1000 | | MOBILIZATION | | JOB | | 1,000,000 | | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 557,600 | 9.79 | 5459 | | | | | RENOURISHMENT 2 | 0 | GV. | 046 500 | 9.79 | 9266 | | | | | | 6 | CY | 946,500 | - | 9200 | 14100 | | | | 3 | - | CY | 946,500 | 15.00 | | 14198 | 14100 | | | <u>4</u>
5 | 12 | CY | 946,500 | 15.00 | | | 14198 | 14100 | | | 18 | CY | 946,500 | 15.00 | 29 | 29 | 20 | 29 | | BEACH TILLING | | ACRE | 98.0 | 300 | | 29 | 29 | 29 | | HARDBOTTOM MITIGATION | | ACRE | 6.5 | 300,000 | 1950 | 100 | 100 | 100 | | GROINS | | TONS | 21,000 | 75.0 | 1575 | 129 | 129 | 129 | | GROIN FOUNDATION (Mattress) | | sq.ft. | 22,000 | 15.0 | 330 | | | | | GROIN FOUNDATION (Geogrid) | | sq.ft. | 95,000 | 2.5 | 238 | | | | | | | | | | 1 | l | | | | SUBTOTAL | | | | | 19847 | 15355 | 15355 | 15355 | | CONTINGENCY | | 15 | 8 | | 2977 | 2303 | 2303 | 2303 | | | | | | | 1 00004 | 15650 | 15650 | 15650 | | SUBTOTAL (CONTRACT) | | | | | 22824 | 17659 | 17659 | 17659 | | | | | | I | 1 | I | | | | EASEMENTS | | JOB | 1 | 437,500 | 438 | | | | | ENVIR. MONITORING | | JOB | 1 | 275,000 | 275 | 275 | 275 | 275 | | GEOTECHNICAL STUDIES | | JOB | 1 | 190,000 | 190 | 190 | 190 | 190 | | E&D+S&A | | JOB | 1 | 1,342,000 | 1342 | 1342 | 1342 | 1342 | | TOTAL CONSTRUCTION | | | | | 25069 | 19466 | 19466 | 19466 | | | CITIMA | ANDSE TABLE | TOMESTO AND AND | MILA I GOGEG | | | | | | | SUMIN | IARY-INVES | STMENT AND ANI | NUAL COSIS | | | | | | TOTAL CONSTRUCTION COST | | | | | 25069 | 19466 | 19466 | 19466 | | INTEREST DURING CONSTRUCTION | | | | | 82 | | | | | TOTAL INVESTMENT COST | | | | | 25151 | 19466 | 19466 | 19466 | | PRESENT WORTH OF EACH CONSTRU | CTION | I | | | 25151 | 13626 | 9538 | 6677 | | TOTAL PRESENT WORTH | | | | | 54991 | | | | | AVERAGE ANNUAL COST | | | | | 4432 | | | | Figure B-6-3: Implementation of Segment III NED Plan with two groins, a jetty spur, and sand bypassing at Port Everglades. | | | | ACT AND CONS | | rs | | | | |--|--------|------------|---------------|------------|--------|---------|---------|-------| | | | -YEAR REN | OURISHMENT II | NTERVAL | | | | | | INTEREST RATE | 6.125 | 8 | | | | | | | | | | | | UNIT | RE | NOURISH | MENT YE | AR | | ITEM | | UNIT | QUANTITY | COST | 0 | 6 | 12 | 18 | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 557,600 | 9.79 | 5459 | | | | | RENOURISHMENT | | | | , | | | | | | 2 | 0 | CY | 982,400 | 9.79 | 9618 | | | | | 3 | 6 | CY | 682,500 | 15.00 | | 10238 | | | | 4 | 12 | CY | 682,500 | 15.00 | | | 10238 | | | 5 | 18 | CY | 682,500 | 15.00 | | | | 10238 | | BEACH TILLING | | ACRE | 115.0 | 300 | 35 | 35 | 35 | 35 | | HARDBOTTOM MITIGATION | | ACRE | 7.56 | 300,000 | 2268 | | | | | GROINS | | TONS | 5,300 | 75.0 | 398 | 44 | 44 | 44 | | GROIN FOUNDATION (Mattress) | | sq.ft. | 22,000 | 15.0 | 330 | | | | | | | | | , | | | | | | SUBTOTAL | | | | | 19107 | 11316 | 11316 | 11316 | | CONTINGENCY | | 15 | ે ક | | 2866 | 1697 | 1697 | 1697 | | | | | 1,5 | | 1 | | | | | SUBTOTAL (CONTRACT) | | | | | 21973 | 13013 | 13013 | 13013 | | EASEMENTS | | JOB | 1 | 437,500 | 438 | | | | | ENVIR. MONITORING | | JOB | 1 | 275,000 | 275 | 275 | 275 | 275 | | GEOTECHNICAL STUDIES | | JOB | 1 | 190,000 | 190 | 190 | 190 | 190 | | E&D+S&A | | JOB | 1 | 1,342,000 | 1342 | 1342 | 1342 | 1342 | | 242 - 241 | | 002 | | 1/312/000 | 1 2312 | 1012 | 1012 | 1312 | | TOTAL CONSTRUCTION | | | | | 24217 | 14820 | 14820 | 14820 | | | SUMM | MARY-INVES | STMENT AND AN | NUAL COSTS | | | | | | TOTAL CONSTRUCTION COST | | | | | 24217 | 14820 | 14820 | 14820 | | INTEREST DURING CONSTRUCTION | | | | | 84 | | | | | TOTAL INVESTMENT COST | | | | | 24301 | 14820 | 14820 | 14820 | | PRESENT WORTH OF EACH CONSTRU | CTION | I | | | 24301 | 10374 | 7262 | 5083 | | INITIAL COST OF BYPASS PLANT | =\$7,0 | 000,000 | | | | 7000 | | | | PRESENT WORTH OF BYPASS PLANT CONSTRUCTION | | | | | | | | | | PRESENT WORTH OF ANNUAL BYPAS | SING | | | | 1264 | | | | | (44,000 cy/yr @ \$3.50/cy star | ting | at YEAR 6 | 5) | | | | | | | TOTAL PRESENT WORTH | | | | | 53184 | | | | | AVERAGE ANNUAL COST | | | | | 4287 | | | | Figure B-6-4: Implementation of Segment III NED Plan with ten groins, a jetty spur and, sand bypassing at Port Everglades. | EST | | | ACT AND CONS' | | rs | | | | |---|--------|------------|---------------|------------|-------|---------|---------|-------| | INTEREST RATE | | 6.125 | ે ક | | | | | | | | | | | UNIT | RE | NOURISH | MENT YE | AR | | ITEM | | UNIT | QUANTITY | COST | 0 | 6 | 12 | 18 | | | | | | | | | | | | MOBILIZATION | | JOB | 1 | 1,000,000 | 1000 | 1000 | 1000 | 1000 | | INITIAL FILL | | CY | 557,600 | 9.79 | 5459 | | | | | RENOURISHMENT | 1 | | T | I | 1 | | | | | 2 | 0 | CY | 946,500 | 9.79 | 9266 | | | | | 3 | 6 | CY | 681,700 | 15.00 | | 10226 | | | | 4 | 12 | CY | 681,700 | 15.00 | | | 10226 | | | 5 | 18 | CY | 681,700 | 15.00 | | | | 10226 | | BEACH TILLING | | ACRE | 98.0 | 300 | 29 | 29 | 29 | 29 | | HARDBOTTOM MITIGATION | | ACRE | 6.5 | 300,000 | 1950 | | | | | GROINS | | TONS | 21,000 | 75.0 | 1575 | 129 | 129 | 129 | | GROIN FOUNDATION (Mattress) | | sq.ft. | 22,000 | 15.0 | 330 | | | | | GROIN FOUNDATION (Geogrid) | | sq.ft. | 95,000 | 2.5 | 238 | | | | | | | | | | 1 | | | | | SUBTOTAL | | | | | 19847 | 11383 | 11383 | 11383 | | CONTINGENCY | | 15 | 8 | | 2977 | 1708 | 1708 | 1708 | | SUBTOTAL (CONTRACT) | | | | | 22824 | 13091 | 13091 | 13091 | | EASEMENTS | | JOB | 1 | 437,500 | 438 | | | | | ENVIR. MONITORING | | JOB | 1 | 275,000 | 275 | 275 | 275 | 275 | | GEOTECHNICAL STUDIES | | JOB | 1 | 190,000 | 190 | 190 | 190 | 190 | | E&D+S&A | | JOB | 1 | 1,342,000 | 1342 | 1342 | 1342 | 1342 | | TOTAL CONSTRUCTION | | | | | 25069 | 14898 | 14898 | 14898 | | | SUMN | MARY-INVES | TMENT AND AN | NUAL COSTS | | | | | | TOTAL CONSTRUCTION COST | | | | | 25069 | 14898 | 14898 | 14898 | | INTEREST DURING CONSTRUCTION | | | | | 82 | | | | | TOTAL INVESTMENT COST | | | | | 25151 | 14898 | 14898 | 14898 | | | | | | | | | | | | PRESENT WORTH OF EACH CONSTRU | CTION | 1 | | | 25151 | 10428 | 7300 | 5110 | | INITIAL COST OF BYPASS PLANT | =\$7.0 | 000,000 | | | | 7000 | | | | PRESENT WORTH OF BYPASS PLANT CONSTRUCTION | | | | | 4900 | | | | | PRESENT WORTH OF BIPASS PLANT CONSTRUCTION PRESENT WORTH OF ANNUAL BYPASSING | | | | | 1264 | | | | | (44,000 cy/yr @ \$3.50/cy star | | at YEAR 6 |) | | | I | | | | TOTAL PRESENT WORTH | | | | | 54153 | | | | | | | | | | | | | | | AVERAGE ANNUAL COST | | | | | 4365 | | | | #### **SEGMENT III** # ENGINEERING COST ESTIMATE FOR OFFSHORE HOPPER-DREDGING, ROCK SEPARATION AND BEACH FILL PLACEMENT (Note: This estimate was prepared by Jacksonville District COE Cost Engineering staff.) MOBIL & DEMOB COST: \$458,885 BID QUANTITY BID QUANTITY 1,800,000 C.Y. UNIT COST... \$9.79 PER C.Y. \$17,622,000 Hopper Dredging EXCAV. COST. 1 TIME...... 11.79 MONTHS PG 1 OF 12: PROJECT TITLES CHECKLIST FOR INPUT DATA PROJECT - Hopper Dredging LOCATION - Segment III - Alternative 1 INVIT# - DATE OF EST. - 17-Nov-99 EST. BY - M Fascher MOB. BID ITEM # - EXCAV. BID ITEM # - 2 . PG 2 OF 12: TYPE OF EST & IND COSTS TYPE OF EST. - Planning Estimate CONTRACTOR'S O.H. - 16.5% CONTRACTOR'S PROFIT - 10.0% CONTRACTOR'S BOND - 1.0% PG 3 OF 12: EXCAVATION QTY'S BANK HEIGHT > 7 ft REQ'D EXCAVATION - 1,800,000 cyds PAY OVERDEPTH - cyds CONTRACT AMOUNT - 1,800,000 cyds NOT DREDGED - cyds NET PAY - 1,800,000 cyds NONPAY YARDAGE - 540,000 cyds GROSS YARDAGE - 2,340,000 cyds LOSSES - 30.0 % of Net Pay TOTAL BANK HEIGHT - 7.0 ft PG 4, 5 & 6 OF 12: PRODUCTION TYPE OF MATERIAL - 3% MUD 94% SAND 3% GRAVEL HOPPER CAPACITY - 3,800 cyds EFF. HOPPER CAP. - 1,950 cyds DRDGE RATE (ALL HEADS) - 1,202 cy/hr ACT. DRAGHDS USED - 2 ea DRDGE RATE USED - 1,202 cy/hr TURNS/CYCLE - 3 ea MIN. PER TURN - 6 min DISPOSAL DIST - 15 mi TRVL SPD TO DISP - 9.8 mph TRVL SPD FROM DISP - 10.8 mph DUMP/CONNECT TIME - 15 min PUMPOUT RATE - 1800 cy/hr PIPELINE USED - 13000 If CLEANUP - 0% More Time % EFF WORK TIME - 86.0% PG 7 & 8 OF 12: PLANT OWN. & OPER. DREDGE SELECTED - GENERIC MEDIUM DREDGE ACQUIS COST - \$16,600,000 DREDGE CAPITAL IMPROV - 10% PROPULSION TUG - self prop. /mo SURVEY VESSEL - \$30,000 /mo BOOSTER - \$200,000 /mo CRANE BARGE - \$0 /mo TENDER TUG - \$40,000 /mo OTHER MARINE - \$0 /mo SHORE EQUIP - \$0 /mo PG 9 OF 12: OTHER ADJUSTMENTS SPECIAL COST/MO (1ST) - \$0 > SP COST/MO (2ND-14TH) - \$0 From Sheet D\3 SPECIAL COST LS (1ST) - \$0 > SP COST LS (2ND-14TH) - \$0 From Sheet E PG 10 OF 12: LOCAL AREA FACTORS
PRESENT YEAR - 1998 ECONOMIC INDEX - 5676 LAF - 0.85 INTEREST RATE - 6.675% /yr TIME PERIOD - July to December 1998 PIPELINE AVAILABILITY - 9 mos/yr BUCKET AVAILABILITY - 10 mos/yr HOPPER AVAILABILITY - 10 mos/yr FUEL PRICE - \$1.00 /gal 50% _____ PG 11 OF 12: DREDGE OPER ADJ FACTORS RPR & MAINT, ADJ - 1.00 JET PUMP USEAGE - 100% PG 12 OF 12: TRAVEL & PROVISIONS PUMP LOAD FACTOR - FREQ PD TRAVEL - 28 days RT TRAVEL COST - \$400 GOVT. PERSONNEL - 3 ea PROVISIONS & SUPP - \$15 /man LOADS PER DAY - 3.3 PRODUCTION - 316 gross cy per hour OPERATING TIME - 628 hours per month GROSS PRODUCTION - 198,448 cy per month PAY PRODUCTION - 152,672 pay cy per month